Skip to main content
Log in

Indirect measurement of the \(^3\hbox {He}\)(n,p)\(^3\hbox {H}\) reaction cross section at Big Bang energies

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Nuclear reactions play a key role in the framework of the Big Bang Nucleosynthesis. A network of 12 principal reactions has been identified as the main path that drove the elemental nucleosynthesis in the first 20 min of the history of the Universe. Among them an important role is played by neutron-induced reactions, which, from an experimental point of view, are usually a difficult task to be measured directly. Nevertheless big efforts in the last decades have led to a better understanding of their role in the primordial nucleosynthesis network. In this work we apply the Trojan Horse Method to extract the cross section at astrophysical energies for the \(^3\text {He}\)(n,p)\(^3\text {H}\) reaction after a detailed study of the \(^2\hbox {H}\)(\(^3\text {He}\),pt)H three-body process. Data extracted from the present measurement are compared with other published sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data are stored in INFN LNS computer disks and are available to the community upon request].

References

  1. G. Steigman, Ann. Rev. Nucl. Part. Sci. 57, 463 (2007)

    ADS  Google Scholar 

  2. B.D. Fields, S. Sarkar, J. Phys. G33, 220 (2006)

    Google Scholar 

  3. A. Coc, S. Goriely, Y. Xu, M. Saimpert, E. Vangioni, Astrophys. J. 744, 18 (2012)

    Google Scholar 

  4. R.H. Cyburt, B.D. Fields, K.A. Olive, T.H. Yeh, Rev. Mod. Phys. 88, 015004 (2016)

    ADS  Google Scholar 

  5. G. Israelian, Nature 489, 37 (2012)

    ADS  Google Scholar 

  6. E. Komatsu et al., Astrophys. J. Suppl. 192, 18 (2011)

    ADS  Google Scholar 

  7. E.W. Kolb, M.S. Turner, The Early Universe (Addison-Wesley, Boston, 1990)

    MATH  Google Scholar 

  8. R. Weymann, E. Moore, Astrophys. J. 137, 552 (1963)

    ADS  Google Scholar 

  9. D. Ezer, A.G.W. Cameron, Icarus 1, 422 (1963)

    ADS  Google Scholar 

  10. C. Iliadis, Nuclear Physics of Stars (Wiley, Hoboken, 2007)

    Google Scholar 

  11. C. Rolfs, Prog. Part. Nucl. Phys. 46, 23 (2001)

    ADS  Google Scholar 

  12. R. Bonetti et al., Phys. Rev. Lett. 82, 5205 (1999)

    ADS  Google Scholar 

  13. C. Casella et al., Nucl. Phys. A 706, 203 (2002)

    ADS  Google Scholar 

  14. J.H. Coon, Phys. Rev. 80, 488 (1950)

    ADS  Google Scholar 

  15. R. Batchelor, R. Aves, T.H.R. Skyrme, Rev. Sci. lnstr. 26, 1037 (1955)

    ADS  Google Scholar 

  16. J.H. Gibbons, R.L. Macklin, Phys. Rev. 114, 571 (1959)

    ADS  Google Scholar 

  17. D.G. Costello, S.J. Friesenhahn, W.M. Lopez, Nucl. Sci. Eng. 39, 409 (1970)

    Google Scholar 

  18. M. Drosg , N. Otuka, INDC (AUS)-0019 (2015)

  19. C.R. Brune, K.I. Hahn, R.W. Kavanagh, P.R. Wrean, Phys. Rev. C60, 015801 (1999)

    ADS  Google Scholar 

  20. A. Adahchour, P. Descouvemont, J. Phys. G Nucl. Part. Phys. 29, 395 (2003)

    ADS  Google Scholar 

  21. M.S. Smith, L.H. Kawano, R.A. Malaney, Astrophys. J. Suppl. Ser. 85, 219 (1993)

    ADS  Google Scholar 

  22. G.R. Caughlan, W.A. Fowler, At. Data Nucl. Data Tables 40, 283 (1988)

    ADS  Google Scholar 

  23. G. Baur, C.A. Bertulani, H. Rebel, Nucl. Phys. A 458, 188 (1986)

    ADS  Google Scholar 

  24. C.A. Bertulani, A. Gade, Phys. Rep. 485, 195 (2010)

    ADS  Google Scholar 

  25. A. Mukhamezhanov et al., Phys. Rev. C 78, 0158042008 (2008)

    Google Scholar 

  26. G.G. Kiss et al., Phys. Lett. B. 807, 135606 (2020)

    Google Scholar 

  27. C. Spitaleri, in Problems of Fundamental Modern Physics, II : Proceedings, Ed. by R. Cherubini,P. Dalpiaz, and B. Minetti (World Sci., 1991), p. 21 (1991)

  28. R.G. Pizzone, R. Spartá, C. Bertulani et al., Astrophys. J. 786, 112 (2014)

    ADS  Google Scholar 

  29. L. Lamia et al., Astrophys. J. 850, 175 (2017)

    ADS  Google Scholar 

  30. L. Lamia, M. Mazzocco, R.G. Pizzone et al., Astrophys. J. 879, 23 (2019)

    ADS  Google Scholar 

  31. G. Baur, C.A. Bertulani, H. Rebel, Nucl. Phys. A 458, 188 (1986)

    ADS  Google Scholar 

  32. S. Typel, H.H. Wolter, Few-Body Syst. 29, 75 (2000)

    ADS  Google Scholar 

  33. S. Typel, G. Baur, Ann. Phys. (N.Y.) 305, 228 (2003)

    ADS  Google Scholar 

  34. C. Spitaleri et al., Nucl. Phys. A 719, 99c (2003)

    ADS  Google Scholar 

  35. C. Spitaleri, M. La Cognata, L. Lamia, A.M. Mukhamedzhanov, R.G. Pizzone, Eur. Phys. J. A 52, 77 (2016)

    ADS  Google Scholar 

  36. C. Spitaleri, M. La Cognata, L. Lamia, R.G. Pizzone, A. Tumino, Eur. Phys. J. A 55, 161 (2019)

    ADS  Google Scholar 

  37. R.G. Pizzone, L. Lamia, C. Spitaleri et al., Phys. Rev. C 83, 045801 (2011)

    ADS  Google Scholar 

  38. R.G. Pizzone, C. Spitaleri, C. Bertulani et al., Phys. Rev. C 87, 025805 (2013)

    ADS  Google Scholar 

  39. A. Tumino, C. Spitaleri, M. La Cognata et al., Nature 557, 687–690 (2018)

    ADS  Google Scholar 

  40. S. Palmerini, M.L. Sergi, M. La Cognata, L. Lamia et al., Astrophys. J. 764, 128 (2013)

    ADS  Google Scholar 

  41. R.G. Pizzone, G. D’Agata, C. Spitaleri et al., Astrophys. J. 836, 57 (2017)

    ADS  Google Scholar 

  42. I. Indelicato, M. La Cognata et al., Astrophys. J. 845, 19 (2017)

    ADS  Google Scholar 

  43. G. D’Agata, R.G. Pizzone et al., Astrophys. J. 860, 61 (2018)

    ADS  Google Scholar 

  44. G.G. Rapisarda et al., Eur. Phys. J A54, 189 (2018)

    ADS  Google Scholar 

  45. A. Cvetinovic et al., Phys. Rev. C 97, 065801 (2018)

    ADS  Google Scholar 

  46. M. Aliotta, C. Spitaleri et al., Eur. Phys. J. A 9, 435 (2000)

    ADS  Google Scholar 

  47. L. Lamia et al., Nuovo Cimento C 31, 423–431 (2008)

    ADS  Google Scholar 

  48. L. Lamia, C. Spitaleri, E. Tognelli et al., Astrophys. J. 811, 99 (2015)

    ADS  Google Scholar 

  49. M.L. Sergi, C. Spitaleri, M. La Cognata et al., Phys. Rev. C 91, 065803 (2015)

    ADS  Google Scholar 

  50. S. Cherubini et al., Phys. Rev. C 92, 015805 (2015)

    ADS  Google Scholar 

  51. R.G. Pizzone, B. Roeder, M. Mckluskey et al., Eur. Phys. J. A 52, 24 (2016)

    ADS  Google Scholar 

  52. M. La Cognata, R.G. Pizzone et al., Astrophys. J. 846, 65 (2017)

    ADS  Google Scholar 

  53. M. Gulino et al., J. Phys. 37, 125105 (2010)

    ADS  Google Scholar 

  54. M. Gulino et al., Phys. Rec. C87, 012801 (2013)

    ADS  Google Scholar 

  55. G.L., Guardo, C. Spitaleri, L. Lamia, et al., Phys. Rev. C 95, 025807 (2017)

  56. G.L. Guardo, C. Spitaleri, L. Lamia et al., Eur. Phys. J. A 55, 211 (2019)

    ADS  Google Scholar 

  57. R.E. Tribble et al., Rep. Prog. Phys. 77, 10690 (2014)

    MathSciNet  Google Scholar 

  58. Qtool: https://t2.lanl.gov/nis/data/qtool.html

  59. L. Lamia et al., Phys. Rev. C 85, 025805 (2012)

    ADS  Google Scholar 

  60. S. Barbarino, M. Lattuada, F. Riggi, C. Spitaleri, D. Vinciguerra, Phys. Rev. C 21, 1104 (1980)

    ADS  Google Scholar 

  61. R.G. Pizzone et al., Phys. Rev. C 80, 025807 (2009)

    ADS  Google Scholar 

  62. R.G. Pizzone, C. Spitaleri, S. Cherubini et al., Phys. Rev. C 71, 058801 (2005)

    ADS  Google Scholar 

Download references

Acknowledgements

We thank the staff of the LNS target laboratory, for target preparation as well as the Nuclear Science Laboratory (supported by Grant the National Science Foundation under grant number NSF PHY-1713857) staff at the University of Notre Dame for their invaluable efforts. J.M, G.D. and V. B. were supported by MEYS Czech Republic under the project EF16-013/0001679. The authors acknowledge “Finanziamenti di linea 2” and “Starting Grant 2020” by University of Catania. This work was also supported in part by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (Nos. 2020R1A2C1005981 and 2016R1A5A1013277).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Pizzone.

Additional information

Communicated by Alexandre Obertelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pizzone, R.G., Spampinato, C., Spartá, R. et al. Indirect measurement of the \(^3\hbox {He}\)(n,p)\(^3\hbox {H}\) reaction cross section at Big Bang energies. Eur. Phys. J. A 56, 199 (2020). https://doi.org/10.1140/epja/s10050-020-00212-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00212-x

Navigation