Skip to main content
Log in

Bounding robustness in complex networks under topological changes through majorization techniques

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Measuring robustness is a fundamental task for analysing the structure of complex networks. Indeed, several approaches to capture the robustness properties of a network have been proposed. In this paper we focus on spectral graph theory where robustness is measured by means of a graph invariant called Kirchhoff index, expressed in terms of eigenvalues of the Laplacian matrix associated to a graph. This graph metric is highly informative as a robustness indicator for several real-world networks that can be modeled as graphs. We discuss a methodology aimed at obtaining some new and tighter bounds of this graph invariant when links are added or removed. We take advantage of real analysis techniques, based on majorization theory and optimization of functions which preserve the majorization order. Applications to simulated graphs and to empirical networks generated by collecting assets of the S&P 100 show the effectiveness of our bounds, also in providing meaningful insights with respect to the results obtained in the literature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Liang, S. Jin, D. Wang, X. Zou, Eur. Phys. J. B 89, 186 (2016)

    ADS  Google Scholar 

  2. A.P. Masucci, C. Molinero, Eur. Phys. J. B 89, 53 (2016)

    ADS  Google Scholar 

  3. G. Paul, T. Tanizawa, S. Havlin, H.E. Stanley, Eur. Phys. J. B, 38, 187 (2004)

    ADS  Google Scholar 

  4. A. Sydney, C.M. Scoglio, P. Schumm, R.E. Kooij, Elasticity: Topological characterization of robustness in complex networks. inProceedings of the 3rd International Conference on Bio-Inspired Models of Network, Information and Computing Sytems (2008), Vol. 19, pp. 1–8

    Google Scholar 

  5. A. Braunstein, L. Dall’Asta, G. Semerjian, L. Zdeborova, PNAS 133, 12368 (2016)

    Google Scholar 

  6. D.S. Callaway, M.E.J. Newman, S.H. Strogatz, D.J. Watts, Phys. Rev. Lett. 85, 5468 (2000)

    ADS  Google Scholar 

  7. F. Morone, H.A. Makse, Nature 524, 65 (2015)

    ADS  Google Scholar 

  8. X.L. Ren, N. Gleinig, D. Helbing, N. Antulov-Fantulin, PNAS 116, 6554 (2019)

    Google Scholar 

  9. L Zdeborova, P. Zhang, H.J. Zhou, Sci. Rep. 6, 37954 (2016)

    ADS  Google Scholar 

  10. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Phys. Rep. 424, 175 (2006)

    MathSciNet  ADS  Google Scholar 

  11. F. Costa, F.A. Rodrigues, G. Travieso, P.R. Villas Boas, Adv. Phys. 56, 167 (2007)

    ADS  Google Scholar 

  12. S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51, 1079 (2002)

    ADS  Google Scholar 

  13. W. Ellens, F.M. Spieksma, P. Van Mieghem, A. Jamakovic, R.E. Kooij, Linear Algebra Appl. 435, 2491 (2011)

    MathSciNet  Google Scholar 

  14. P. Van MieghemGraph Spectra for Complex Networks (Cambridge University Press, Cambridge, 2011)

  15. D.J. Klein, M. Randić, J. Math. Chem. 12, 81 (1993)

    MathSciNet  Google Scholar 

  16. A.Z. Broder, A.R. Karlin, J. Theor. Prob. 2, 101 (1989)

    Google Scholar 

  17. A. Chandra, P. Raghavan, W. Ruzzo, R. Smolensky, P. Tiwari, The electrical resistance of a graph captures its commute and cover times, inSTOC (1989), pp. 574–586

  18. X. Wang, E. Pournaras, R.E. Kooij, P. Van Mieghem, Eur. Phys. J. B 87, 221 (2014)

    ADS  Google Scholar 

  19. A. Ghosh, S. Boyd, A. Saberi, SIAM Rev. 50, 37 (2008)

    MathSciNet  ADS  Google Scholar 

  20. P. Van Mieghem, X. Ge, P. Schumm, S. Trajanovski, H. Wang, Phys. Rev. E 82, 56 (2010)

    Google Scholar 

  21. W. Abbas, M. Egerstedt, Robust graph topologies for networked systems, in3rd IFAC Workshop on Distributed Estimation and Control in Networked Systems (2012), pp. 85–90

  22. M. Bianchi, A. Cornaro, J.L. Palacios, A. Torriero, Localization of Graph Topological Indices via Majorization Technique, inQuantitative Graph Theory. Mathematical Foundations and Applications (CRC Press, Boca Raton, 2014), pp. 35–79

  23. M. Bianchi, A. Cornaro, A. Torriero, Discr. Appl. Math. 161, 2731 (2013)

    Google Scholar 

  24. R. Grone, R. Merris, SIAM J. Discr. Math. 7, 221 (1994)

    Google Scholar 

  25. F. Harary,Graph Theory (Addison-Wesley Publishing Company, Boston, 1969)

  26. L. Feng, I. Gutman, L. Yu, Trans. Comb. 1, 27 (2010)

    Google Scholar 

  27. H.Y. Zhu, D.J. Klein, I. Lukovits, J. Chem. Inf. Comput. Sci. 36, 420 (1996)

    Google Scholar 

  28. M. Bianchi, A. Cornaro, A. Torriero. Math. Inequal. Appl. 16, 329 (2013)

    MathSciNet  Google Scholar 

  29. A.W. Marshall, I. Olkin, B. Arnold,Inequalities: Theory of Majorization and Its Applications. (Springer, Berlin, 2011)

  30. M. Bianchi, A. Cornaro, J.L. Palacios, A. Torriero, J. Math.Chem. 51, 569 (2013)

    MathSciNet  Google Scholar 

  31. G.P. Clemente, A. Cornaro, MATCH Commun. Math. Comput. Chem. 73, 175 (2015)

    MathSciNet  Google Scholar 

  32. A. Cornaro, G.P. Clemente, Electron. Notes Discr. Math. 41, 383 (2013)

    Google Scholar 

  33. J.L. Palacios, J.M. Renom, Int. J. Quantum Chem. 111, 35 (2011)

    Google Scholar 

  34. H. Wang, H. Hua, D. Wang, Math. Commun. 15, 347 (2010)

    MathSciNet  Google Scholar 

  35. B. Zhou, N. Trinajstić, Chem. Phys. Lett. 455, 120 (2008)

    ADS  Google Scholar 

  36. P. Erdős, A. Rényi, Publ. Math. 6, 290 (1959)

    Google Scholar 

  37. P. Erdős, A. Rényi, Publ. Math. Int. Hung. Acad. Sci. 5, 17 (1960)

    Google Scholar 

  38. R. Albert, A. Barabasi, Rev. Mod. Phys. 74, 47 (2002)

    MathSciNet  ADS  Google Scholar 

  39. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    ADS  Google Scholar 

  40. R. Albert, H. Jeong, A.L. Barabási, Nature 406, 378 (2000)

    ADS  Google Scholar 

  41. L.P. Chi, X. Cai, Int. J. Mod. Phys. B 18, 2394 (2004)

    ADS  Google Scholar 

  42. R. Cohen, D. Ben-Avraham, S. Havlin, Phys. Rev. E 66, 36 (2002)

    Google Scholar 

  43. F. Pozzi, T. Di Matteo, T. Aste, Sci. Rep. 3, 1665 (2013)

    ADS  Google Scholar 

  44. V. Tola, F. Lillo, M. Gallegati, R.N. Mantegna, J. Econ. Dyn. Control 32, 235 (2008)

    Google Scholar 

  45. M. Tumminello, T. Aste, T. Di Matteo, R.N. Mantegna, Proc. Natl. Acad. Sci. 102, 10421 (2005)

    ADS  Google Scholar 

  46. M. Tumminello, T. Di Matteo, T. Aste, R.N. Mantegna, Eur. Phys. J. B 55, 209 (2007)

    MathSciNet  ADS  Google Scholar 

  47. L.M. Varela, G. Rotundo, M. Ausloos, J. Carrete, Complex network analysis in socioeconomic models, inComplexity and Geographical Economics (Springer, Berlin, 2015), pp. 209–245

  48. J.P. Onnela, A. Chakraborti, K. Kaski, J. Kertesz, A. Kanto, Phys. Rev. E 68, 056110 (2003)

    ADS  Google Scholar 

  49. M. Ausloos, Physica A 285, 48 (2000)

    MathSciNet  ADS  Google Scholar 

  50. N. Vandewalle, M. Ausloos, Physica A 246, 454 (1997)

    ADS  Google Scholar 

  51. S. Battiston, J.B. Glattfelder, D. Garlaschelli, F. Lillo, G. Caldarelli, The structure of financial networks, inNetwork Science (Springer, Berlin, 2010), pp. 131–163

  52. M. Illing, Y. Liu, J. Financial Stab. 2, 243 (2006)

    Google Scholar 

  53. G.P. Clemente, R. Grassi, C. Pederzoli, J. Econ. Interact. Coord. 15, 1 (2019)

    Google Scholar 

  54. S.C. Hakkio, W.R. Keeton, Economic Review 94, 5 (2009), pp. 5–50

    Google Scholar 

  55. D. Holló, M. Kremer, M. Lo Duca, CISS - A composite indicator of systemic stress in the financial system, European Central Bank Working Paper (2012)

  56. C. Minoiu, J.A. Reyes, J. Financial Stab. 9, 168 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Cornaro.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clemente, G.P., Cornaro, A. Bounding robustness in complex networks under topological changes through majorization techniques. Eur. Phys. J. B 93, 114 (2020). https://doi.org/10.1140/epjb/e2020-100563-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-100563-2

Keywords

Navigation