Skip to main content
Log in

Fractional-quantum-Hall-effect (FQHE) in 1D Hubbard models

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the quantum self-organization of interacting particles in one-dimensional (1D) many-body systems, modeled via Hubbard chains with short-range interactions between the particles. We show the emergence of 1D states with density-wave and clustering order, related to topology, at odd denominator fillings that appear also in the fractional-quantum-Hall-effect (FQHE), which is a 2D electronic system with Coulomb interactions between the electrons and a perpendicular magnetic field. For our analysis, we use an effective topological measure applied on the real space wavefunction of the system, the Euler characteristic describing the clustering of the interacting particles. The source of the observed effect is the spatial constraints imposed by the interaction between the particles. In overall, we demonstrate a simple mechanism to reproduce many of the effects appearing in the FQHE, without requiring a Coulomb interaction between the particles or the application of an external magnetic field.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the numerical data from our calculations are displayed/plotted inside the figures.].

References

  1. F.D.M. Haldane, Phys. Rev. Lett. 45, 1358 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  2. F.D.M. Haldane, Phys. Lett. A 93, 464 (1983a)

    Article  MathSciNet  ADS  Google Scholar 

  3. I. Affleck, T. Kennedy, E.H. Lieb, H. Tasaki, Phys. Rev. Lett. 59, 799 (1987)

    Article  ADS  Google Scholar 

  4. M. Levin, X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006)

    Article  ADS  Google Scholar 

  5. X. Chen, Z.-C. Gu, X.-G. Wen, Phys. Rev. B 82, 155138 (2010)

    Article  ADS  Google Scholar 

  6. A. Kitaev, J. Preskill, Phys. Rev. Lett. 96, 110404 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  7. A.Y. Kitaev, Ann. Phys. 303, 2 (2003)

    Article  ADS  Google Scholar 

  8. V. Alba, M. Fagotti, P. Calabrese, J. Stat. Mech. 0910, P10020 (2009)

    Article  Google Scholar 

  9. V. Alba, M. Haque, M. Luchli, Phys. Rev. Lett. 110, 260403 (2013)

    Article  ADS  Google Scholar 

  10. I. Hen, M. Rigol, Phys. Rev. B 80, 134508 (2009)

    Article  ADS  Google Scholar 

  11. A. Hamma, R. Ionicioiu, P. Zanardi, Phys. Rev. A 71, 022315 (2005)

    Article  ADS  Google Scholar 

  12. P. Calabrese, A. Lefevre, Phys. Rev. A f78, 032329 (2008)

    Article  ADS  Google Scholar 

  13. F. Pollmann, A.M. Turner, E. Berg, M. Oshikawa, Phys. Rev. B 81, 064439 (2010)

    Article  ADS  Google Scholar 

  14. L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  Google Scholar 

  15. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  Google Scholar 

  16. D.C. Tsui, H.L. Stormer, A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982)

    Article  ADS  Google Scholar 

  17. E.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983)

    Article  ADS  Google Scholar 

  18. H.L. Stormer, D.C. Tsui, A.C. Gossard, Rev. Mod. Phys. 71(S298), S305 (1999)

    Google Scholar 

  19. H. Li, F.D.M. Haldane, Phys. Rev. Lett. 101, 010504 (2008)

    Article  ADS  Google Scholar 

  20. F.D.M. Haldane, Phys. Rev. Lett. 107, 116801 (2011)

    Article  ADS  Google Scholar 

  21. I. Kleftogiannis, I. Amanatidis, Eur. Phys. J. B 93, 84 (2020)

    Article  ADS  Google Scholar 

  22. I. Kleftogiannis I, I. Amanatidis , V. Popkov, J. Stat. Mech. 063102 (2019)

  23. B. Chen, G. Chen, Gauss–Bonnet formula, Finiteness condition, and characterizations for graphs embedded in surfaces. Graphs Combin. 24(3), 159–183 (2008)

  24. O. Knill, A discrete Gauss-Bonnet type theorem. Elem. Math. 67, 1–17 (2012)

  25. O. Knill, A graph theoretical Gauss–Bonnet–Chern theorem (2011). arXiv:1111.5395

  26. I. Kleftogiannis, I. Amanatidis, Eur. Phys. J. B 92, 198 (2019)

    Article  ADS  Google Scholar 

  27. I. Kleftogiannis, I. Amanatidis, J. Stat. Mech. 083108 (2020)

  28. W. Pan, J.S. Xia, H.L. Stormer, D.C. Tsui, C. Vicente, E.D. Adams, N.S. Sullivan, L.N. Pfeiffer, K.W. Baldwin, K.W. West, Phys. Rev. B 77, 075307 (2008)

    Article  ADS  Google Scholar 

  29. W.P. Su, J.R. Schrieffer, Phys. Rev. Lett. 46, 738 (1980)

    Article  ADS  Google Scholar 

  30. E.J. Bergholtz, A. Karlhede, Phys. Rev. B 77, 155308 (2008)

    Article  ADS  Google Scholar 

  31. H. Guo, S.Q. Shen, S. Feng, Phys. Rev. B 86, 085124 (2012)

    Article  ADS  Google Scholar 

  32. M.I. Dyakonov, J. Phys. Conf. Ser. 456, 012008 (2013)

    Article  Google Scholar 

  33. R. Pankaj, S. Yarlagadda, Phys. Rev. B 86, 035453 (2012)

    Article  ADS  Google Scholar 

  34. A. Ghosh, S. Yarlagadda, Phys. Rev. B 90, 045140 (2014)

    Article  ADS  Google Scholar 

  35. G. Timp, R. Behringer, J.E. Cunningham, R.E. Howard, Phys. Rev. Lett. 63, 2268 (1989)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge resources and financial support provided by the National Center for Theoretical Sciences of R.O.C. Taiwan and the Department of Physics of Ben-Gurion University of the Negev in Israel. Also we acknowledge support by the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), funded by the EC Research Innovation Action under the H2020 Programme. In particular, we gratefully acknowledge the computer resources and technical support provided by ARIS-GRNET and the hospitality of the Department of Physics at the University of Ioannina in Greece.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Kleftogiannis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleftogiannis, I., Amanatidis, I. Fractional-quantum-Hall-effect (FQHE) in 1D Hubbard models. Eur. Phys. J. B 94, 41 (2021). https://doi.org/10.1140/epjb/s10051-021-00050-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00050-w

Navigation