Skip to main content
Log in

Energetic and entropic considerations for coarse-graining

  • Topical Review - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations often adopt coarse-grained (CG) models to investigate length- and time-scales that cannot be effectively addressed with atomically detailed models. However, the effective potentials that govern CG models are configuration-dependent free energies with significant entropic contributions that have important consequences for the transferability and thermodynamic properties of CG models. This review summarizes recent work investigating the fundamental origin and practical ramifications of these entropic contributions, as well as their sensitivity to the CG mapping. We first analyze the energetic and entropic components of the many-body potential of mean force. By adopting a simple model for protein fluctuations, we examine how these components vary with the CG representation. We then introduce a “dual potential” approach for addressing these entropic considerations in more complex systems, such as ortho-terphenyl (OTP). We demonstrate that this dual approach not only accurately describes the structure and energetic properties of the underlying atomic model, but also accurately predicts the temperature-dependence of the CG potentials. Furthermore, by considering two different CG representations of OTP, we elucidate how these contributions vary with resolution. In sum, we hope this work will prove useful for improving the transferability and thermodynamic properties of CG models for soft materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability statement

The manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available from the Penn State DataCommons repository: https://www.datacommons.psu.edu. The data for Figures 3-5 are available at DataCommons with the https://doi.org/10.26208/139c-8x65. The data for Figures 7-8 are available at DataCommons under the title “Systematic study of temperature and density variations in effective potentials for coarse-grained models of molecular liquids.” The data for Figures 9-10 are available at DataCommons with the https://doi.org/10.26208/sj0e-pj49. The data for Figures 12-16 are available at DataCommons with the https://doi.org/10.26208/45tq-fw66. The data for Figures 1 and 2, as well as the images for Figures 6 and 11 will be available at DataCommons under the title of this paper and also at a DOI to be published.]

References

  1. M.L. Klein, W. Shinoda, Science 321(5890), 798 (2008). https://doi.org/10.1126/science.1157834

    Article  ADS  Google Scholar 

  2. C. Peter, K. Kremer, Faraday Discuss. 144, 9 (2010)

    Article  ADS  Google Scholar 

  3. M. Guenza, M. Dinpajooh, J. McCarty, I. Lyubimov, J. Phys. Chem. B 122(45), 10257 (2018)

    Article  Google Scholar 

  4. M. Muller, K. Katsov, M. Schick, Phys. Rep. 434(5–6), 113 (2006). https://doi.org/10.1016/j.physrep.2006.08.003

    Article  ADS  Google Scholar 

  5. F. Schmid, Macromol. Rapid Comm. 30(9–10), 741 (2009). https://doi.org/10.1002/marc.200800750

    Article  Google Scholar 

  6. M. Deserno, Macromol. Rapid Comm. 30(9–10), 752 (2009). https://doi.org/10.1002/marc.200900090

    Article  Google Scholar 

  7. W.G. Noid, J. Chem. Phys. 139(9), 090901 (2013). https://doi.org/10.1063/1.4818908

    Article  ADS  Google Scholar 

  8. W.G. Noid, Methods Mol. Biol. 924, 487 (2013). https://doi.org/10.1007/978-1-62703-017-5_19

    Article  Google Scholar 

  9. M.G. Saunders, G.A. Voth, Annu. Rev. Biophys. 42, 73 (2013). https://doi.org/10.1146/annurev-biophys-083012-130348

    Article  Google Scholar 

  10. E. Brini, E.A. Algaer, P. Ganguly, C. Li, F. Rodríguez-Ropero, N.F.A. van der Vegt, Soft Matter 9, 2108 (2013). https://doi.org/10.1039/C2SM27201F

    Article  ADS  Google Scholar 

  11. R. Potestio, C. Peter, K. Kremer, Entropy 16(8), 4199 (2014). https://doi.org/10.3390/e16084199

    Article  ADS  Google Scholar 

  12. H.I. Ingólfsson, C.A. Lopez, J.J. Uusitalo, D.H. de Jong, S.M. Gopal, X. Periole, S.J. Marrink, Wiley Interdiscipl. Rev. Comput. Mol. Sci. 4(3), 225 (2014). https://doi.org/10.1002/wcms.1169

    Article  Google Scholar 

  13. S. Kmiecik, D. Gront, M. Kolinski, L. Wieteska, A.E. Dawid, A. Kolinski, Chem. Rev. 116, 7898 (2016)

    Article  Google Scholar 

  14. S.Y. Joshi, S.A. Deshmukh, Mol. Simul. 2020, 1–18 (2020)

    Google Scholar 

  15. M. Giulini, M. Rigoli, G. Mattiotti, R. Menichetti, T. Tarenzi, R. Fiorentini, R. Potestio, Front. Mol. Biosci. 8, 460 (2021). https://doi.org/10.3389/fmolb.2021.676976

    Article  Google Scholar 

  16. J.F. Rudzinski, Computing 7(3), 42 (2019)

    Google Scholar 

  17. A. Liwo, C. Czaplewski, J. Pillardy, H.A. Scheraga, J. Chem. Phys. 115, 2323 (2001)

    Article  ADS  Google Scholar 

  18. C.N. Likos, Phys. Rep. 348(4–5), 267 (2001). https://doi.org/10.1016/S0370-1573(00)00141-1

    Article  ADS  Google Scholar 

  19. R.L.C. Akkermans, W.J. Briels, J. Chem. Phys. 114(2), 1020 (2001). https://doi.org/10.1063/1.1330744

    Article  ADS  Google Scholar 

  20. N.J.H. Dunn, T.T. Foley, W.G. Noid, Acc. Chem. Res. 49(12), 2832 (2016)

    Article  Google Scholar 

  21. M.E. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation (Oxford University Press, Oxford, Great Britain, 2013)

  22. W.G. Noid, J.W. Chu, G.S. Ayton, V. Krishna, S. Izvekov, G.A. Voth, A. Das, H.C. Andersen, J. Chem. Phys. 128, 244114 (2008)

    Article  ADS  Google Scholar 

  23. G. Ciccotti, R. Kapral, E. Vanden-Eijnden, ChemPhysChem 6, 1809 (2005)

    Article  Google Scholar 

  24. L. Zhang, J. Han, H. Wang, R. Car, W.E. Noe, J. Chem. Phys. 149(3), 034101 (2018). https://doi.org/10.1063/1.5027645

    Article  ADS  Google Scholar 

  25. W. Wang, R. Gómez-Bombarelli, NPJ Comput. Mat. 5(1), 125 (2019). https://doi.org/10.1038/s41524-019-0261-5

    Article  Google Scholar 

  26. J.F. Rudzinski, W.G. Noid, J. Chem. Phys. 135(21), 214101 (2011). https://doi.org/10.1063/1.3663709

    Article  ADS  Google Scholar 

  27. S. Kullback, R.A. Leibler, Ann. Math. Stat. 22(1), 79 (1951)

    Article  Google Scholar 

  28. T.T. Foley, M.S. Shell, W.G. Noid, J. Chem. Phys. 143, 243104 (2015)

    Article  ADS  Google Scholar 

  29. J.G. Kirkwood, J. Chem. Phys. 3(5), 300 (1935)

    Article  ADS  Google Scholar 

  30. D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2nd edn. (Academic Press, San Diego, 2002)

    MATH  Google Scholar 

  31. J.W. Wagner, J.F. Dama, A.E.P. Durumeric, G.A. Voth, J. Chem. Phys. 145(4), 044108 (2016). https://doi.org/10.1063/1.4959168

    Article  ADS  Google Scholar 

  32. K.M. Lebold, W.G. Noid, J. Chem. Phys. 151(16), 164113 (2019)

    Article  ADS  Google Scholar 

  33. T.T. Foley, K.M. Kidder, M.S. Shell, W. Noid, Proc. Natl. Acad. Sci. USA 117(39), 24061 (2020)

    Article  Google Scholar 

  34. P.J. Flory, M. Gordon, N.G. McCrum, Proc. R. Soc. Lond. A: Math. Phys. Sci. 351(1666), 351 (1976). https://doi.org/10.1098/rspa.1976.0146

    Article  ADS  Google Scholar 

  35. T. Haliloglu, I. Bahar, B. Erman, Phys. Rev. Lett. 79, 3090 (1997)

    Article  ADS  Google Scholar 

  36. I. Bahar, T.R. Lezon, L.W. Yang, E. Eyal, Annu. Rev. Biophys. 39, 23 (2010). https://doi.org/10.1146/annurev.biophys.093008.131258

    Article  Google Scholar 

  37. J.M. Harris, J.L. Hirst, M.J. Mossinghoff, Combinatorics and Graph Theory (Springer, Berlin, 2010)

    MATH  Google Scholar 

  38. M.C. Wang, G.E. Uhlenbeck, Rev. Mod. Phys. 17, 323 (1945)

    Article  ADS  Google Scholar 

  39. T.R. Lezon, I. Bahar, PLoS Comput. Biol. 6(6), e1000816 (2010). https://doi.org/10.1371/journal.pcbi.1000816

    Article  ADS  Google Scholar 

  40. D.A. McQuarrie, Statistical Mechanics (University Science Books, Berlin, 2000)

    MATH  Google Scholar 

  41. R. Baron, A.H. de Vries, P.H. Hünenberger, W.F. van Gunsteren, J. Phys. Chem. B 110(16), 8464 (2006). https://doi.org/10.1021/jp055888y

    Article  Google Scholar 

  42. R. Baron, V. Molinero, J. Chem. Theory Comput. 8(10), 3696 (2012). https://doi.org/10.1021/ct300121r

    Article  Google Scholar 

  43. S.T. Lin, M. Blanco, W. Goddard, J. Chem. Phys. 119, 11792 (2003)

    Article  ADS  Google Scholar 

  44. M.P. Bernhardt, M. Dallavalle, N.F. Van der Vegt, Soft Mater. 2020, 1–16 (2020)

    Google Scholar 

  45. E. Brini, V. Marcon, N.F.A. van der Vegt, Phys. Chem. Chem. Phys. 13(22), 10468 (2011). https://doi.org/10.1039/c0cp02888f

    Article  Google Scholar 

  46. A.P. Lyubartsev, A. Laaksonen, Phys. Rev. E 55, 5689 (1997). https://doi.org/10.1103/PhysRevE.55.5689

    Article  ADS  Google Scholar 

  47. G.G. Rondina, M.C. Böhm, F. Müller-Plathe, J. Chem. Theory Comput. 16(3), 1431 (2020)

    Article  Google Scholar 

  48. M.K. Meinel, F. Müller-Plathe, J. Chem. Theory Comput. 16(3), 1411 (2020)

    Article  Google Scholar 

  49. M.E.J. Newman, G.T. Barkema, Monte Carlo Methods in Statistical Physics (Clarendon Press, Hoboken, 1999)

    MATH  Google Scholar 

  50. M.R. Shirts, J.D. Chodera, J. Chem. Phys. 129(12), 124105 (2008)

    Article  ADS  Google Scholar 

  51. H. Gohlke, M.F. Thorpe, Biophys. J. 91, 2115 (2006)

    Article  ADS  Google Scholar 

  52. Z.Y. Zhang, L.Y. Lu, W.G. Noid, V. Krishna, J. Pfaendtner, G.A. Voth, Biophys. J. 95(11), 5073 (2008)

    Article  ADS  Google Scholar 

  53. Z.Y. Zhang, G.A. Voth, J. Chem. Theory Comput. 6(9), 2990 (2010). https://doi.org/10.1021/ct100374a

    Article  Google Scholar 

  54. P. Koehl, F. Poitevin, R. Navaza, M. Delarue, J. Chem. Theory Comput. 13(3), 1424 (2017)

    Article  Google Scholar 

  55. M. Girvan, M.E.J. Newman, Proc. Natl. Acad. Sci. USA 99(12), 7821 (2002). https://doi.org/10.1073/pnas.122653799

    Article  ADS  MathSciNet  Google Scholar 

  56. J. Reichardt, S. Bornholdt, Phys. Rev. E 74, 1 (2006). https://doi.org/10.1103/PhysRevE.74.016110

    Article  Google Scholar 

  57. S. Fortunato, Phys. Rep. 486(3–5), 75 (2010). https://doi.org/10.1016/j.physrep.2009.11.002

    Article  ADS  MathSciNet  Google Scholar 

  58. M.T. Schaub, J.C. Delvenne, S.N. Yaliraki, M. Barahona, PLoS One, 2012, p. e32210. https://doi.org/10.1371/journal.pone.0032210

    Book  Google Scholar 

  59. M. Giulini, R. Menichetti, M.S. Shell, R. Potestio, J. Chem. Theory Comput. 16(11), 6795 (2020)

    Article  Google Scholar 

  60. D.H.E. Gross, Microcanonical Thermodynamics (WORLD SCIENTIFICWORLD, 2001). https://doi.org/10.1142/4340

  61. L. Boninsegna, R. Banisch, C. Clementi, J. Chem. Theory Comput. 14(1), 453 (2018). https://doi.org/10.1021/acs.jctc.7b00990. (Publisher: American Chemical Society)

    Article  Google Scholar 

  62. M.A. Webb, J.Y. Delannoy, J.J. de Pablo, J. Chem. Theory Comput. (2018). https://doi.org/10.1021/acs.jctc.8b00920

  63. M. Chakraborty, C. Xu, A.D. White, J. Chem. Phys. 149(13), 134106 (2018)

    Article  ADS  Google Scholar 

  64. J. Wang, S. Olsson, C. Wehmeyer, A. Pérez, N.E. Charron, G. De Fabritiis, F. Noé, C. Clementi, A.C.S. Cent, Science 5(5), 755 (2019)

    Google Scholar 

  65. J. Ruza, W. Wang, D. Schwalbe-Koda, S. Axelrod, W.H. Harris, R. Gómez-Bombarelli, J. Chem. Phys. 153(16), 164501 (2020)

    Article  ADS  Google Scholar 

  66. Z. Li, G.P. Wellawatte, M. Chakraborty, H.A. Gandhi, C. Xu, A.D. White, Chemistry 11(35), 9524 (2020)

    Google Scholar 

  67. M. Chakraborty, J. Xu, A.D. White, Phys. Chem. Chem. Phys. 22(26), 14998 (2020)

    Article  Google Scholar 

  68. S. Izvekov, G.A. Voth, J. Phys. Chem. B 109, 2469 (2005)

    Article  Google Scholar 

  69. S. Izvekov, G.A. Voth, J. Chem. Phys. 123, 134105 (2005)

    Article  ADS  Google Scholar 

  70. W.G. Noid, P. Liu, Y.T. Wang, J.W. Chu, G.S. Ayton, S. Izvekov, H.C. Andersen, G.A. Voth, J. Chem. Phys. 128, 244115 (2008)

    Article  ADS  Google Scholar 

  71. M. Dallavalle, N.F. van der Vegt, Phys. Chem. Chem. Phys. 19(34), 23034 (2017)

    Article  Google Scholar 

  72. A. Khot, S.B. Shiring, B.M. Savoie, J. Chem. Phys. 151(24), 244105 (2019)

    Article  ADS  Google Scholar 

  73. V.A. Harmandaris, D. Reith, N.F.A. Van der Vegt, K. Kremer, Macromol. Chem. Phys. 208, 2109 (2007). https://doi.org/10.1002/macp.200700245

    Article  Google Scholar 

  74. O. Bezkorovaynaya, A. Lukyanov, K. Kremer, C. Peter, J. Comp. Chem. 33(9), 937 (2012). https://doi.org/10.1002/jcc.22915

    Article  Google Scholar 

  75. T. Ohkuma, K. Kremer, Polymer 130, 88 (2017)

    Article  Google Scholar 

  76. J.F. Rudzinski, W.G. Noid, J. Chem. Theory Comput. 11(3), 1278 (2015)

    Article  Google Scholar 

  77. J.F. Rudzinski, W.G. Noid, J. Phys. Chem. B 118(28), 8295 (2014)

    Article  Google Scholar 

  78. J.F. Rudzinski, W.G. Noid, J. Phys. Chem. B 116(29), 8621 (2012). https://doi.org/10.1021/jp3002004

    Article  Google Scholar 

  79. J.F. Rudzinski, W.G. Noid, Eur. Phys. J.: Spec. Top. 224, 2193 (2015)

    Google Scholar 

  80. J. Jin, G.A. Voth, J. Chem. Theory Comput. 14, 2180 (2018)

    Article  Google Scholar 

  81. A. Chaimovich, M.S. Shell, Phys. Rev. E 89(2), 022140 (2014)

    Article  ADS  Google Scholar 

  82. C. Scherer, D. Andrienko, Phys. Chem. Chem. Phys. 20(34), 22387 (2018)

    Article  Google Scholar 

  83. J.I. Monroe, M.S. Shell, J. Chem. Phys. 151(9), 094501 (2019)

    Article  ADS  Google Scholar 

  84. J. Jin, Y. Han, A.J. Pak, G.A. Voth, J. Chem. Phys. 154(4), 044104 (2021)

    Article  ADS  Google Scholar 

  85. J. Jin, A.J. Pak, Y. Han, G.A. Voth, J. Chem. Phys. 154(4), 044105 (2021)

    Article  ADS  Google Scholar 

  86. M.S. Shell, J. Chem. Phys. 129, 144108 (2008)

    Article  ADS  Google Scholar 

  87. A. Chaimovich, M.S. Shell, J. Chem. Phys. 134(9), 094112 (2011)

    Article  ADS  Google Scholar 

  88. M.S. Shell, Coarse-Graining with the Relative Entropy (Wiley, Hoboken, 2016). https://doi.org/10.1002/9781119290971.ch5

  89. A. Isihara, J. Phys. A: Math. Nucl. Gen. 1(5), 539 (1968)

    Article  ADS  Google Scholar 

  90. A. Lyubartsev, A. Mirzoev, L.J. Chen, A. Laaksonen, Faraday Discuss. 144, 43 (2010)

    Article  ADS  Google Scholar 

  91. D. Reith, M. Pütz, F. Müller-Plathe, J. Comp. Chem. 24, 1624 (2003)

    Article  Google Scholar 

  92. A.P. Lyubartsev, A. Laaksonen, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscipl. Top. 52, 3730 (1995)

    Google Scholar 

  93. T. Murtola, M. Karttunen, I. Vattulainen, J. Chem. Phys. 131, 055101 (2009)

    Article  ADS  Google Scholar 

  94. N.J.H. Dunn, W.G. Noid, J. Chem. Phys. 144, 204124 (2016)

    Article  ADS  Google Scholar 

  95. F. Ercolessi, J.B. Adams, Europhys. Lett. 26, 583 (1994)

    Article  ADS  Google Scholar 

  96. A.J. Chorin, Multiscale Model. Simul. 1, 105 (2003)

    Article  MathSciNet  Google Scholar 

  97. A.J. Chorin, O.H. Hald, Stochastic Tools in Mathematics and Science (Springer, New York, 2006)

    MATH  Google Scholar 

  98. W.G. Noid, J.W. Chu, G.S. Ayton, G.A. Voth, J. Phys. Chem. B 111, 4116 (2007)

    Article  Google Scholar 

  99. A. Das, H.C. Andersen, J. Chem. Phys. 132, 164106 (2010)

    Article  ADS  Google Scholar 

  100. N.J.H. Dunn, W.G. Noid, J. Chem. Phys. 143(24), 243148 (2015)

    Article  ADS  Google Scholar 

  101. J.W. Mullinax, W.G. Noid, Phys. Rev. Lett. 103, 198104 (2009)

    Article  ADS  Google Scholar 

  102. J.W. Mullinax, W.G. Noid, J. Phys. Chem. C 114, 5661 (2010)

    Article  Google Scholar 

  103. S.P. Carmichael, M.S. Shell, J. Phys. Chem. B 116(29), 8383 (2012). https://doi.org/10.1021/jp2114994

    Article  Google Scholar 

  104. S.Y. Mashayak, M.N. Jochum, K. Koschke, N.R. Aluru, V. Rühle, C. Junghans, PLOS One 2015, 20 (2015)

    Google Scholar 

  105. L. Larini, L.Y. Lu, G.A. Voth, J. Chem. Phys. 132(16), 164107 (2010)

    Article  ADS  Google Scholar 

  106. J.A. Harrison, J.D. Schall, S. Maskey, P.T. Mikulski, M.T. Knippenberg, B.H. Morrow, App. Phys. Rev. 5(3), 031104 (2018). https://doi.org/10.1063/1.5020808

    Article  Google Scholar 

  107. A.A. Louis, J. Phys.: Condens. Matter 14, 9187 (2002)

    ADS  Google Scholar 

  108. M.E. Johnson, T. Head-Gordon, A.A. Louis, J. Chem. Phys. 126, 144509 (2007)

    Article  ADS  Google Scholar 

  109. F.H. Stillinger, H. Sakai, S. Torquato, J. Chem. Phys. 117(1), 288 (2002). https://doi.org/10.1063/1.1480863

    Article  ADS  Google Scholar 

  110. Y.T. Wang, W.G. Noid, P. Liu, G.A. Voth, Phys. Chem. Chem. Phys. 11(12), 2002 (2009). https://doi.org/10.1039/b819182d

    Article  Google Scholar 

  111. A.J. Clark, J. McCarty, I.Y. Lyubimov, M.G. Guenza, Phys. Rev. Lett. 109, 168301 (2012). https://doi.org/10.1103/PhysRevLett.109.168301

    Article  ADS  Google Scholar 

  112. J. McCarty, A.J. Clark, J. Copperman, M.G. Guenza, J. Chem. Phys. 140(20), 204913 (2014)

    Article  ADS  Google Scholar 

  113. G. D’Adamo, A. Pelissetto, C. Pierleoni, J. Chem. Phys. 138(23), 234107 (2013). https://doi.org/10.1063/1.4810881

    Article  ADS  Google Scholar 

  114. J. Ghosh, R. Faller, Mol. Simul. 33, 759 (2007)

    Article  Google Scholar 

  115. P. Carbone, H.A.K. Varzaneh, X. Chen, F. Müller-Plathe, J. Chem. Phys. 128, 064904 (2008)

    Article  ADS  Google Scholar 

  116. D.M. Huang, R. Faller, K. Do, A.J. Moule, J. Chem. Theory Comput. 6(2), 526 (2010). https://doi.org/10.1021/ct900496t. PMID: 26617308

    Article  Google Scholar 

  117. G. Megariotis, A. Vyrkou, A. Leygue, D.N. Theodorou, Ind. Eng. Chem. Res. 50, 546 (2011)

    Article  Google Scholar 

  118. B. Mukherjee, L. Delle Site, K. Kremer, C. Peter, J. Phys. Chem. B 116(29), 8474 (2012)

    Article  Google Scholar 

  119. A. Mirzoev, A.P. Lyubartsev, Phys. Chem. Chem. Phys. 13, 5722 (2011). https://doi.org/10.1039/C0CP02397C

    Article  Google Scholar 

  120. Q. Xiao, H. Guo, Phys. Chem. Chem. Phys. 18, 29808 (2016). https://doi.org/10.1039/C6CP03753D

    Article  Google Scholar 

  121. T.D. Potter, J. Tasche, M.R. Wilson, Phys. Chem. Chem. Phys. 21, 1912 (2019). https://doi.org/10.1039/C8CP05889J

    Article  Google Scholar 

  122. S. Mortezazadeh, Y. Jamali, H. Naderi-Manesh, A.P. Lyubartsev, PLoS One 14, e0214673 (2019)

    Article  Google Scholar 

  123. J.W. Mullinax, W.G. Noid, J. Chem. Phys. 131, 104110 (2009)

    Article  ADS  Google Scholar 

  124. T.C. Moore, C.R. Iacovella, C. McCabe, J. Chem. Phys. 140(22), 224104 (2014)

    Article  ADS  Google Scholar 

  125. J.F. Rudzinski, K. Lu, S.T. Milner, J.K. Maranas, W.G. Noid, J. Chem. Theory Comput. 13(5), 2185 (2017)

    Article  Google Scholar 

  126. T. Sanyal, J. Mittal, M.S. Shell, J. Chem. Phys. 151(4), 044111 (2019)

    Article  ADS  Google Scholar 

  127. K. Shen, N. Sherck, M. Nguyen, B. Yoo, S. Köhler, J. Speros, K.T. Delaney, G.H. Fredrickson, M.S. Shell, J. Chem. Phys. 153(15), 154116 (2020)

    Article  ADS  Google Scholar 

  128. J.F. Rudzinski, T. Bereau, J. Chem. Phys. 153(21), 214110 (2020)

    Article  ADS  Google Scholar 

  129. J. Zhang, H. Guo, J. Phys. Chem. B 118(17), 4647 (2014). https://doi.org/10.1021/jp411615f

    Article  Google Scholar 

  130. F. Cao, H. Sun, J. Chem. Theory Comput. 11, 4760 (2015). https://doi.org/10.1021/acs.jctc.5b00573

    Article  Google Scholar 

  131. J. Jin, A. Yu, G.A. Voth, J. Chem. Theory Comput. 16(11), 6823 (2020)

    Article  Google Scholar 

  132. J. Xia, Q. Xiao, H. Guo, Polymer 148, 284 (2018)

    Article  Google Scholar 

  133. C. Hu, T. Lu, H. Guo, J. Chem. Inf. Model. 59(5), 2009 (2019). https://doi.org/10.1021/acs.jcim.8b00887

    Article  Google Scholar 

  134. T. Vettorel, H. Meyer, J. Chem. Theory Comput. 2, 616 (2006)

    Article  Google Scholar 

  135. H.J. Qian, P. Carbone, X. Chen, H.A. Karimi-Varzaneh, C.C. Liew, F. Müller-Plathe, Macromolecules 41(24), 9919 (2008)

    Article  ADS  Google Scholar 

  136. A. Chaimovich, M.S. Shell, Phys. Chem. Chem. Phys. 11(12), 1901 (2009). https://doi.org/10.1039/b818512c

    Article  Google Scholar 

  137. K. Farah, A.C. Fogarty, M.C. Böhm, F. Müller-Plathe, Phys. Chem. Chem. Phys. 13(7), 2894 (2011). https://doi.org/10.1039/c0cp01333a

    Article  Google Scholar 

  138. L. Lu, G.A. Voth, J. Chem. Phys. 134(22), 224107 (2011). https://doi.org/10.1063/1.3599049

    Article  ADS  Google Scholar 

  139. A. Liwo, M. Khalili, C. Czaplewski, S. Kalinowski, S. Ołdziej, K. Wachucik, H.A. Scheraga, J. Phys. Chem. B 111(1), 260 (2007). https://doi.org/10.1021/jp065380a

    Article  Google Scholar 

  140. G. Deichmann, M. Dallavalle, D. Rosenberger, N.F. van der Vegt, J. Phys. Chem. B 123(2), 504 (2018)

    Article  Google Scholar 

  141. D. Rosenberger, N.F.A. van der Vegt, Phys. Chem. Chem. Phys. 20, 6617 (2018). https://doi.org/10.1039/c7cp08246k

    Article  Google Scholar 

  142. C. Hu, T. Lu, H. Guo, J. Chem. Inf. Model. 59(5), 2009 (2019)

    Article  Google Scholar 

  143. Y. Li, V. Agrawal, J. Oswald, J. Polym. Sci., Part B: Polym. Phys. 57(6), 331 (2019)

    Article  ADS  Google Scholar 

  144. M. King, S. Pasler, C. Peter, J. Phys. Chem. C 123(5), 3152 (2019)

    Article  Google Scholar 

  145. K.M. Lebold, W.G. Noid, J. Chem. Phys. 150(1), 014104 (2019)

    Article  ADS  Google Scholar 

  146. R.J. Szukalo, W. Noid, Soft Mater. 18, 1 (2020)

    Article  Google Scholar 

  147. K.M. Lebold, W.G. Noid, J. Chem. Phys. 150, 234107 (2019)

    Article  ADS  Google Scholar 

  148. J. Jin, A.J. Pak, G.A. Voth, J. Phys. Chem. Lett. 10(16), 4549 (2019)

    Article  Google Scholar 

  149. R.J. Szukalo, W.G. Noid, J. Phys.: Condens. Matter 33(15), 154004 (2021). https://doi.org/10.1088/1361-648x/abdff8

    Article  ADS  Google Scholar 

  150. A.P. Lyubartsev, A. Laaksonen, Phys. Rev. E 55(5), 5689 (1997)

    Article  ADS  Google Scholar 

  151. J.F. Dama, A.V. Sinitskiy, M. McCullagh, J. Weare, B. Roux, A.R. Dinner, G.A. Voth, J. Chem. Theory Comput. 9, 2466 (2013). https://doi.org/10.1021/ct4000444

    Article  Google Scholar 

  152. F. Müller-Plathe, ChemPhysChem 3, 754 (2002)

    Article  Google Scholar 

  153. H. Wang, C. Junghans, K. Kremer, Eur. Phys. J. E: Soft Matter Biol. Phys. 28(2), 221 (2009)

    Article  Google Scholar 

  154. I. Pagonabarraga, D. Frenkel, J. Chem. Phys. 115(11), 5015 (2001)

    Article  ADS  Google Scholar 

  155. T. Sanyal, M.S. Shell, J. Chem. Phys. 145(3), 034109 (2016). https://doi.org/10.1063/1.4958629

    Article  ADS  Google Scholar 

  156. M.R. DeLyser, W.G. Noid, J. Chem. Phys. 147, 134111 (2017)

    Article  ADS  Google Scholar 

  157. T. Sanyal, M.S. Shell, J. Phys. Chem. B 122, 5678 (2018)

    Article  Google Scholar 

  158. M.R. DeLyser, W. Noid, J. Chem. Phys. 151(22), 224106 (2019)

    Article  ADS  Google Scholar 

  159. M. DeLyser, W. Noid, J. Chem. Phys. 153(22), 224103 (2020)

    Article  ADS  Google Scholar 

  160. N. Shahidi, A. Chazirakis, V. Harmandaris, M. Doxastakis, J. Chem. Phys. 152(12), 124902 (2020). https://doi.org/10.1063/1.5143245

    Article  ADS  Google Scholar 

  161. G. Tóth, J. Phys.: Condens. Matter 19(33), 335222 (2007). https://doi.org/10.1088/0953-8984/19/33/335222

    Article  Google Scholar 

  162. T. Dannenhoffer-Lafage, J.W. Wagner, A.E.P. Durumeric, G.A. Voth, J. Chem. Phys. 151(13), 134115 (2019). https://doi.org/10.1063/1.5116027

    Article  ADS  Google Scholar 

  163. M.D. Ediger, C.A. Angell, S.R. Nagel, J. Chem. Phys. 100(31), 13200 (1996)

    Article  Google Scholar 

  164. L. Berthier, G. Biroli, Rev. Mod. Phys. 83(2), 587 (2011)

    Article  ADS  Google Scholar 

  165. X. Song, M. Jensen, V. Jogini, R.A. Stein, C.H. Lee, H.S. Mchaourab, D.E. Shaw, E. Gouaux, Nature 556(7702), 515 (2018). https://doi.org/10.1038/s41586-018-0039-9

    Article  ADS  Google Scholar 

  166. W. Xia, J. Song, N.K. Hansoge, F.R. Phelan Jr., S. Keten, J.F. Douglas, J. Phys. Chem. B 122(6), 2040 (2018)

    Article  Google Scholar 

  167. W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996)

    Article  Google Scholar 

  168. N.J.H. Dunn, K.M. Lebold, M.R. DeLyser, J.F. Rudzinski, W.G. Noid, J. Phys. Chem. B 122(13), 3363 (2018). https://doi.org/10.1021/acs.jpcb.7b09993

    Article  Google Scholar 

  169. W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14, 33 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the essential contributions of Tommy Foley, M. Scott Shell, and Kate Lebold to the prior studies that are explicitly discussed herein. The authors also acknowledge former group members Michael DeLyser, Nick Dunn, Joe Rudzinski, and Wayne Mullinax, who made important contributions to the computational methods employed in these studies. The authors gratefully acknowledge financial support from the National Science Foundation (Grant nos. MCB-1053970, CHE-1565631, CHE-1856337) that made this work possible, as well as a fellowship to Kate Lebold from the Molecular Sciences Software Institute under NSF Grant No. ACI-1547580. Portions of this research were conducted with Advanced CyberInfrastructure computational resources provided by The Institute for Computational and Data Sciences at The Pennsylvania State University (http://icds.psu.edu). In addition, parts of this research were conducted with XSEDE resources awarded by Grant TG - CHE170062. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the National Science Foundation (Grant ACI-1548562). Figs. 1-3, 11, and 15, and 16 employed VMD [169]. VMD is developed with NIH support by the Theoretical and Computational Biophysics group at the Beckman Institute, University of Illinois at Urbana-Champaign.

Author information

Authors and Affiliations

Authors

Contributions

KK and RS contributed equally to this work under the supervision of WN, KK and RS both performed original calculations and analyzed previously published results. KK, RS, and WN wrote and edited the manuscript.

Corresponding author

Correspondence to W. G. Noid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kidder, K.M., Szukalo, R.J. & Noid, W.G. Energetic and entropic considerations for coarse-graining. Eur. Phys. J. B 94, 153 (2021). https://doi.org/10.1140/epjb/s10051-021-00153-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00153-4

Navigation