Skip to main content
Log in

Topological defect states and phase transitions in mesoscopic superconducting squares with Rashba spin–orbit interaction

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Based on the spin-generalized Bogoliubov–de Gennes theory, we investigate the topological defect configurations in a mesoscopic superconducting square with spin–orbit (SO) interaction. The mixed even-parity d-wave and extended s-wave components can be obtained by suitable choice of the chemical potential in such a system. We find that several novel types of topological defect states can be generated in the presence of Rashba SO coupling when the external magnetic flux turns on. Unclosed domain-wall states carrying even or odd number of one-component vortices as well as double-quanta skyrmionic patterns can appear for different Rashba SO-coupling strengths. The next-nearest-neighbor hopping effect on the evolution of topological structures is further examined. A skyrmionic chain feature with one-component vortex–antivortex pairs can show up in the present mixed-pairing system. Our investigation may provide useful information for future experiments and shed new light on device designing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The results and data presented in this work can be replicated using the numerical procedures described in the text.]

References

  1. B.J. Baelus, F.M. Peeters, Phys. Rev. B 65, 104515 (2002)

    Article  ADS  Google Scholar 

  2. V.F. Becerra, M.V. Milosevic, Phys. Rev. B 94, 184517 (2016)

    Article  ADS  Google Scholar 

  3. V.F. Becerra, E. Sardella, F.M. Peeters, M.V. Milosevic, Phys. Rev. B 93, 014518 (2016)

    Article  ADS  Google Scholar 

  4. H.-B. Braun, Adv. Phys. 61, 1 (2012)

    Article  ADS  Google Scholar 

  5. P.M.R. Brydon, A.P. Schnyder, C. Timm, Phys. Rev. B 84, 020501(R) (2011)

    Article  ADS  Google Scholar 

  6. R.-F. Chai, G.-Q. Zha, Eur. Phys. J. B 94, 193 (2021)

    Article  ADS  Google Scholar 

  7. L.F. Chibotaru, A. Ceulemans, V. Bruyndoncx, V.V. Moshchalkov, Nature 408, 833 (2000)

    Article  ADS  Google Scholar 

  8. L. Da-Chuan, Y.-Y. Lv, J. Li, B.-Y. Zhu, Q.-H. Wang, H.-B. Wang, P.-H. Wu, NPJ Quantum Mater. 3, 12 (2018)

    Article  ADS  Google Scholar 

  9. P.G. de Gennes, Superconductivity of Metals and Alloys (Addison-Wesley, New York, 1994)

    MATH  Google Scholar 

  10. G. Dresselhaus, A.F. Kip, C. Kittel, Phys. Rev. 95, 568 (1954). (G. Dresselhaus, Phys. Rev. 100, 580 (1955))

    Article  ADS  Google Scholar 

  11. E.T. Filby, A.A. Zhukov, P.A.J. de Groot, M.A. Ghanem, P.N. Bartlett, V.V. Metlushko, Appl. Phys. Lett. 89, 092503 (2006)

    Article  ADS  Google Scholar 

  12. J. Garaud, E. Babaev, Phys. Rev. B 86, 060514 (2012). (Scientific Reports 5, 17540 (2015))

    Article  ADS  Google Scholar 

  13. J. Garaud, E. Babaev, Phys. Rev. Lett. 112, 017003 (2014)

    Article  ADS  Google Scholar 

  14. J. Garaud, E. Babaev, Phys. Rev. B 91, 014510 (2015)

    Article  ADS  Google Scholar 

  15. J. Garaud, J. Carlstrom, E. Babaev, Phys. Rev. Lett. 107, 197001 (2011)

    Article  ADS  Google Scholar 

  16. J. Garaud, J. Carlstrom, E. Babaev, M. Speight, Phys. Rev. B 87, 014507 (2013)

    Article  ADS  Google Scholar 

  17. A.K. Geim, I.V. Grigorieva, S.V. Dubonos, J.G.S. Lok, J.C. Maan, A.E. Filippov, F.M. Peeters, Nature 390, 259 (1997)

    Article  ADS  Google Scholar 

  18. A.K. Geim, S.V. Dubonos, J.G.S. Lok, M. Henini, J.C. Maan, Nature 396, 144 (1998)

    Article  ADS  Google Scholar 

  19. A.K. Geim, S.V. Dubonos, I.V. Grigorieva, K.S. Novoselov, F.M. Peeters, V.A. Schweigert, Nature 407, 55 (2000)

    Article  ADS  Google Scholar 

  20. R. Geurts, M.V. Milosevic, F.M. Peeters, Phys. Rev. Lett. 97, 137002 (2006). (Phys. Rev. B 79, 174508 (2009))

    Article  ADS  Google Scholar 

  21. L.P. Gorkov, E.I. Rashba, Phys. Rev. Lett. 87, 037004 (2001)

    Article  ADS  Google Scholar 

  22. V. Grinenko, P. Materne, R. Sarkar, H. Luetkens, K. Kihou, C.H. Lee, S. Akhmadaliev, D.V. Efremov, S.-L. Drechsler, H.-H. Klauss, Phys. Rev. B 95, 214511 (2017)

    Article  ADS  Google Scholar 

  23. S. Ikegaya, W.B. Rui, D. Manske, Andreas, P. Schnyder, Phys. Rev. Res. 3, 023007 (2021)

    Article  Google Scholar 

  24. K. Jiang, X. Wu, J. Hu, Z. Wang, Phys. Rev. Lett. 121, 227002 (2018)

    Article  ADS  Google Scholar 

  25. M. Kheirkhah, Z. Yan, Y. Nagai, F. Marsiglio, Phys. Rev. Lett. 125, 017001 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  26. K. Kuboki, J. Phys. Soc. Jpn. 70, 2698 (2001)

    Article  ADS  Google Scholar 

  27. W.-C. Lee, S.-C. Zhang, C. Wu, Phys. Rev. Lett. 102, 217002 (2009)

    Article  ADS  Google Scholar 

  28. N.D. Mermin, Rev. Mod. Phys. 51, 591 (1979)

    Article  ADS  Google Scholar 

  29. R. Micnas, J. Ranninger, S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990)

    Article  ADS  Google Scholar 

  30. V.V. Moshchalkov, L. Gielen, C. Strunk, R. Jonckheere, X. Qiu, C. Van Haesendonck, Y. Bruynseraede, Nature 373, 319 (1995)

    Article  ADS  Google Scholar 

  31. E.I. Rashba, Sov. Phys. Solid State 2, 1109 (1960). (Y. A. Bychkov and E. I. Rashba, JETP Lett. 39, 78 (1984))

    Google Scholar 

  32. M. Sato, S. Fujimoto, Phys. Rev. Lett. 105, 217001 (2010)

    Article  ADS  Google Scholar 

  33. M. Sato, Y. Takahashi, S. Fujimoto, Phys. Rev. Lett. 103, 020401 (2009). (Phys. Rev. B 82, 134521 (2010))

    Article  ADS  Google Scholar 

  34. J.D. Sau, R.M. Lutchyn, S. Tewari, S. Das Sarma, Phys. Rev. Lett. 104, 040502 (2010)

  35. A.P. Schnyder, S. Ryu, Phys. Rev. B 84, 060504(R) (2011)

    Article  ADS  Google Scholar 

  36. A.P. Schnyder, P.M.R. Brydon, C. Timm, Phys. Rev. B 85, 024522 (2012)

    Article  ADS  Google Scholar 

  37. Y. Tanaka, Y. Mizuno, T. Yokoyama, K. Yada, M. Sato, Phys. Rev. Lett. 105, 097002 (2010)

  38. Y. Tanaka, M. Sato, N. Nagaosa, J. Phys. Soc. Jpn. 81, 011013 (2012)

    Article  ADS  Google Scholar 

  39. M. Veldhorst, C.G. Molenaar, X.L. Wang, H. Hilgenkamp, A. Brinkman, Appl. Phys. Lett. 100, 072602 (2012)

    Article  ADS  Google Scholar 

  40. R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, Berlin, 2003)

    Book  Google Scholar 

  41. C.L.M. Wong, J. Liu, K.T. Law, P.A. Lee, Phys. Rev. B 88, 060504(R) (2013)

    Article  ADS  Google Scholar 

  42. K. Yada, M. Sato, Y. Tanaka, T. Yokoyama, Phys. Rev. B 83, 064505 (2011)

    Article  ADS  Google Scholar 

  43. G.-Q. Zha, Phys. Rev. B 95, 014510 (2017). (Solid State Communications 302, 113730 (2019))

    Article  ADS  Google Scholar 

  44. G.-Q. Zha, EPL 130, 67005 (2020)

    Article  ADS  Google Scholar 

  45. G.-Q. Zha, S.-P. Zhou, B.-H. Zhu, Y.-M. Shi, H.-W. Zhao, Phys. Rev. B 74, 024527 (2006)

    Article  ADS  Google Scholar 

  46. G.-Q. Zha, H.-W. Zhao, S.-P. Zhou, Phys. Rev. B 76, 132503 (2007)

    Article  ADS  Google Scholar 

  47. G.-Q. Zha, L. Covaci, F.M. Peeters, S.-P. Zhou, Phys. Rev. B 92, 094516 (2015)

    Article  ADS  Google Scholar 

  48. H.-M. Zhang, Z.-X. Li, J.-P. Peng, C.-L. Song, J.-Q. Guan, Z. Li, L. Wang, K. He, S.-H. Ji, X. Chen, H. Yao, X.-C. Ma, Q.-K. Xue, Phys. Rev. B 93, 020501(R) (2016)

    Article  ADS  Google Scholar 

  49. L.-F. Zhang, V.F. Becerra, L. Covaci, M.V. Milosevic, Phys. Rev. B 94, 024520 (2016)

    Article  ADS  Google Scholar 

  50. L.-F. Zhang, L. Covaci, M.V. Milosevic, Phys. Rev. B 96, 224512 (2017)

    Article  ADS  Google Scholar 

  51. L.-F. Zhang, Y.-Y. Zhang, G.-Q. Zha, M.V. Milosevic, S.-P. Zhou, Phys. Rev. B 101, 064501 (2020)

    Article  ADS  Google Scholar 

  52. Y. Zhong, Y. Wang, S. Han, Y.-F. Lv, W.-L. Wang, D. Zhang, H. Ding, Y.-M. Zhang, L. Wang, K. He, R. Zhong, J.A. Schneeloch, G.-D. Gu, C.-L. Song, X.-C. Ma, Q.-K. Xue, Sci. Bull. 61, 1239 (2016)

    Article  Google Scholar 

  53. X. Zhu, Phys. Rev. Lett. 122, 236401 (2019)

    Article  ADS  Google Scholar 

  54. A.A. Zyuzin, J. Garaud, E. Babaey, Phys. Rev. Lett. 119, 167001 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grants No. 62171267 and No. 61771298.

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Guo-Qiao Zha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, RF., Zha, GQ. Topological defect states and phase transitions in mesoscopic superconducting squares with Rashba spin–orbit interaction. Eur. Phys. J. B 95, 101 (2022). https://doi.org/10.1140/epjb/s10051-022-00369-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00369-y

Navigation