Skip to main content
Log in

Molecular-weight dependence of the glass transition temperature of freely-standing poly(methyl methacrylate) films

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We have used transmission ellipsometry to measure the glass transition temperature, Tg, of freely-standing films of atactic and syndiotactic poly(methyl methacrylate) (PMMA). We have prepared films with different molecular weights, MW, (159×103 < M w < 1.3×106) and film thicknesses, h, ( 30nm < h < 200 nm). For the high-MW ( M w > 509×103) atactic PMMA films, we find that Tg decreases linearly with decreasing h, which is qualitatively similar to previous results obtained for high-MW freely-standing polystyrene (PS) films. However, the overall magnitude of the Tg reduction is much less (by roughly a factor of three) for the high-MW freely-standing PMMA films than for freely-standing PS films of comparable MW and h. The observed differences between the freely-standing PMMA and PS film data suggest that differences in chemical structure determine the magnitude of the Tg reduction and we discuss the possible origins of these differences. Our analysis of the MW-dependence of the Tg reductions suggests that the mechanism responsible for the MW-dependent Tg reductions observed in the high-MW freely-standing films is different than that responsible for the MW-independent Tg reductions observed in the low-MW freely-standing and supported films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.L. Keddie, R.A.L. Jones, R.A. Cory, Europhys. Lett. 27, 59 (1994).

    ADS  Google Scholar 

  2. J.L. Keddie, R.A.L. Jones, R.A. Cory, Faraday Discuss. 98, 219 (1994).

    Article  Google Scholar 

  3. J.A. Forrest, K. Dalnoki-Veress, Adv. Colloid Interface Sci. 94, 167 (2001).

    Article  Google Scholar 

  4. C.B. Roth, J.R. Dutcher, in Soft Materials: Structure and Dynamics, edited by J.R. Dutcher, A.G. Marangoni (Marcel Dekker, 2004).

  5. M. Alcoutlabi, G.B. McKenna, J. Phys.: Condens. Matter 17, R461 (2005).

  6. J. Baschnagel, F. Varnik, J. Phys.: Condens. Matter 17, R851 (2005).

  7. C.J. Ellison, M.K. Mundra, J.M. Torkelson, Macromolecules 38, 1767 (2005).

    Article  Google Scholar 

  8. J.A. Forrest, K. Dalnoki-Veress, J.R. Stevens, J.R. Dutcher, Phys. Rev. Lett. 77, 2002

  9. J.A. Forrest, K. Dalnoki-Veress, J.R. Dutcher, Phys. Rev. E 56, 5705 (1997).

    Article  ADS  Google Scholar 

  10. J.A. Forrest, K. Dalnoki-Veress, J.R. Stevens, J.R. Dutcher, Phys. Rev. E 58, 6109 (1998).

    Article  ADS  Google Scholar 

  11. J.R. Dutcher, K. Dalnoki-Veress, J.A. Forrest, in Supramolecular Structure in Confined Geometries, edited by G. Warr, S. Manne, Am. Chem. Soc. Symp. Ser. 736, 127 (1999).

    Google Scholar 

  12. J. Mattsson, J.A. Forrest, L. Börjesson, Phys. Rev. E 62, 5187 (2000).

    Article  ADS  Google Scholar 

  13. K. Dalnoki-Veress, J.A. Forrest, C. Murray, C. Gigault, J.R. Dutcher, Phys. Rev. E 63, 031801 (2001).

    Article  ADS  Google Scholar 

  14. J.A. Forrest, J. Mattsson, Phys. Rev. E 61, R53 (2000).

  15. E. Hempel, G. Hempel, A. Hensel, C. Schick, E. Donth, J. Phys. Chem. B 104, 2460 (2000).

    Article  Google Scholar 

  16. C.B. Roth, J.R. Dutcher, Phys. Rev. E 72, 021803 (2005).

    Article  ADS  Google Scholar 

  17. C.B. Roth, J.R. Dutcher, to be published in J. Polym. Sci., Part B: Polym. Phys. (2006).

  18. Z. Fakhraai, S. Valadkhan, J.A. Forrest, Eur. Phys. J. E 18, 143 (2005).

    Article  Google Scholar 

  19. P.G. de Gennes, Eur. Phys. J. E 2, 201 (2000).

    Article  Google Scholar 

  20. P.G. de Gennes, C. R. Acad. Sci. Paris, Sér. IV 1, 1179 (2000).

    Google Scholar 

  21. D. Long, F. Lequeux, Eur. Phys. J. E 4, 371 (2001).

    Article  Google Scholar 

  22. S. Merabia, P. Sotta, D. Long, Eur. Phys. J. E 15, 189 (2004).

    Article  Google Scholar 

  23. S. Herminghaus, K. Jacobs, R. Seemann, Eur. Phys. J. E 5, 531 (2001).

    Article  Google Scholar 

  24. S. Herminghaus, Eur. Phys. J. E 8, 237 (2002).

    Article  Google Scholar 

  25. K. Ngai, Eur. Phys. J. E 8, 225 (2002).

    Article  Google Scholar 

  26. K. Ngai, A.K. Rizos, Mater. Res. Soc. Symp. Proc. 455, 147 (1997).

    Google Scholar 

  27. C.J. Ellison, J.M. Torkelson, Nature Mater. 2, 695 (2003).

    Article  ADS  Google Scholar 

  28. C.B. Roth, J.R. Dutcher, Eur. Phys. J. E 12, s01, 024 (2003).

    Google Scholar 

  29. The $R_{ee}$ values were determined using data given in Table XXXIX of P.J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1953) p. 618.

  30. We have not measured the tacticity content of the atactic PMMA, but an estimate of the relative isotactic and syndiotactic content can be obtained from the value of $T_g^{\text{bulk}}$. Higher $T_g^{\text{bulk}}$ values indicate a higher percentage of syndiotactic content

  31. R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light (North-Holland Publishing Company, Amsterdam, 1977).

  32. No differences were observed in the measured $T_g$ values if the sample chamber was flushed for 15 min with dry nitrogen gas instead of only 30 s.

  33. L.S.A. Smith, V. Schmitz, Polymer 29, 1871 (1988).

    Article  Google Scholar 

  34. H. Shindo, I. Murakami, H. Yamamura, J. Polym. Sci., Part A: Polym. Chem. 7, 297 (1969).

    Article  Google Scholar 

  35. S. Wu, J. Phys. Chem. 74, 632 (1970).

    Article  Google Scholar 

  36. D.J. Plazek, K.L. Ngai, in Physical Properties of Polymers Handbook, edited by J.E. Mark (AIP, Woodbury, NY, 1996) Chapt. 12.

  37. K.K. Chee, J. Appl. Polym. Sci. 43, 1205 (1991).

    Article  Google Scholar 

  38. X.Y. Lu, B.Z. Jiang, Polymer 32, 471 (1991).

    Article  Google Scholar 

  39. The possibility of a larger energy barrier for de Gennes' sliding mode for PMMA relative to that for PS is supported by the observation that, at $100\,^\circ$C, the monomeric friction coefficient $\zeta$ is $\sim 50 %$ greater for PMMA than for PS , see G.C. Berry, T.G. Fox, Adv. Polym. Sci. 5, 261 (1968).

    Article  Google Scholar 

  40. R. Subramanian, R.D. Allen, J.E. McGrath, T.C. Ward, Polymer Prepr. 26, 238 (1985).

    Google Scholar 

  41. J.M. O'Reilly, R.A. Mosher, Macromolecules 14, 602 (1981).

    Article  Google Scholar 

  42. Y. Grohens, R.E. Prud'homme, J. Schultz, Macromolecules 31, 2545 (1998).

    Article  Google Scholar 

  43. P.R. Sundararajan, Macromolecules 19, 415 (1986).

    Article  Google Scholar 

  44. M. Vacatello, P.J. Flory, Macromolecules 19, 405 (1986).

    Article  Google Scholar 

  45. K. Schmidt-Rohr, A.S. Kulik, H.W. Beckham, A. Ohlemacher, U. Pawelzik, C. Boeffel, H.W. Spiess, Macromolecules 27, 4733 (1994).

    Article  Google Scholar 

  46. S.C. Kuebler, D.J. Schaefer, C. Boeffel, U. Pawelzik, H.W. Spiess, Macromolecules 30, 6597 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, C.B., Pound, A., Kamp, S.W. et al. Molecular-weight dependence of the glass transition temperature of freely-standing poly(methyl methacrylate) films. Eur. Phys. J. E 20, 441–448 (2006). https://doi.org/10.1140/epje/i2006-10034-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2006-10034-0

PACS.

Navigation