Skip to main content
Log in

Nano-swimmers in biological membranes and propulsion hydrodynamics in two dimensions

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Active protein inclusions in biological membranes can represent nano-swimmers and propel themselves in lipid bilayers. A simple model of an active inclusion with three particles (domains) connected by variable elastic links is considered. First, the membrane is modeled as a two-dimensional viscous fluid and propulsion behavior in two dimensions is examined. After that, an example of a microscopic dynamical simulation is presented, where the lipid bilayer structure of the membrane is resolved and the solvent effects are included by multiparticle collision dynamics. Statistical analysis of data reveals ballistic motion of the swimmer, in contrast to the classical diffusion behavior found in the absence of active transitions between the states.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.M. Purcell, Am. J. Phys. 45, 3 (1977)

    Article  ADS  Google Scholar 

  2. A. Shapere, F. Wilzcek, Phys. Rev. Lett. 58, 2051 (1987)

    Article  ADS  Google Scholar 

  3. D. Tam, A. Hosoi, Phys. Rev. Lett. 98, 068105 (2007)

    Article  ADS  Google Scholar 

  4. A. Najafi, R. Golestanian, Phys. Rev. E 69, 062901 (2004)

    Article  ADS  Google Scholar 

  5. M. Iima, A.S. Mikhailov, EPL 85, 44001 (2009)

    Article  ADS  Google Scholar 

  6. S. Alonso, A.S. Mikhailov, Phys. Rev. E 79, 061906 (2009)

    Article  ADS  Google Scholar 

  7. T. Sakaue, R. Kapral, A.S. Mikhailov, Eur. Phys. J. B 75, 381 (2010)

    Article  ADS  MATH  Google Scholar 

  8. R. Golestanian, A. Ajdari, Phys. Rev. Lett. 100, 038101 (2010)

    Article  ADS  Google Scholar 

  9. R. Golestanian, Phys. Rev. Lett. 105, 018103 (2010)

    Article  ADS  Google Scholar 

  10. B. Alberts, Cell 92, 291 (1998)

    Article  Google Scholar 

  11. N. Kodera, D. Yamamoto, R. Ishikawa, T. Ando, Nature 468, 72 (2010)

    Article  ADS  Google Scholar 

  12. T. Uchinashi, R. Iino, T. Ando, H. Noji, Science 333, 755 (2011)

    Article  ADS  Google Scholar 

  13. H. Flechsig, A.S. Mikhailov, Proc. Natl. Acad. Sci. U.S.A. 107, 20875 (2010)

    Article  ADS  Google Scholar 

  14. C. Echeverria, Y. Togashi, A.S. Mikhailov, R. Kapral, Phys. Chem. Chem. Phys. 13, 10527 (2011)

    Article  Google Scholar 

  15. J. Prost, R. Bruinsma, EPL 33, 321 (1996)

    Article  ADS  Google Scholar 

  16. S. Sankararaman, G.I. Menon, P.B. Sunil Kumar, Phys. Rev. E 66, 031914 (2002)

    Article  ADS  Google Scholar 

  17. H.-Y. Chen, Phys. Rev. Lett. 92, 168101 (2004)

    Article  ADS  Google Scholar 

  18. H.-Y. Chen, A.S. Mikhailov, Phys. Rev. E 81, 031901 (2010)

    Article  ADS  Google Scholar 

  19. P.G. Saffman, M. Delbruck, Proc. Natl. Acad. Sci. U.S.A. 72, 3111 (1975)

    Article  ADS  Google Scholar 

  20. H. Diamant, J. Phys. Soc. Jpn. 78, 041002 (2009)

    Article  ADS  Google Scholar 

  21. G. Marchioro, M. Pulvirenti, Commun. Math. Phys. 84, 483 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. M. Leoni, T.B. Liverpool, Phys. Rev. Lett. 105, 238102 (2010)

    Article  ADS  Google Scholar 

  23. M.-J. Huang, R. Kapral, A.S. Mikhailov, H.-Y. Chen, J. Chem. Phys. 137, 055101 (2012)

    Article  ADS  Google Scholar 

  24. B.L. de Groot, H. Grubmüller, Science 294, 2353 (2001)

    Article  ADS  Google Scholar 

  25. R. Kapral, Adv. Chem. Phys. 140, 89 (2008)

    Article  Google Scholar 

  26. C.M. Pooley, G.P. Alexander, Y.M. Yeomans, Phys. Rev. Lett. 99, 228103 (2007)

    Article  ADS  Google Scholar 

  27. A. Cressman, Y. Togashi, A.S. Mikhailov, R. Kapral, Phys. Rev. E 77, 050901 (2008)

    Article  ADS  Google Scholar 

  28. A.S. Mikhailov, D. Meinköhn, Self-motion in physico-chemical systems far from thermal equilibrium, in Stochastic Dynamics, edited by L. Schimansky-Geier, Th. Pöschel, Springer Lect. Notes Phys., Vol. 484 (Springer, Berlin, 1997) pp. 336-345

  29. J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vahabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007)

    Article  ADS  Google Scholar 

  30. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 4th ed. (Garland, New York, 2002)

  31. A. Malevanets, R. Kapral, J. Chem. Phys. 110, 8605 (1999)

    Article  ADS  Google Scholar 

  32. G. Gompper, T. Ihle, D.M. Kroll, R.G. Winkler, Adv. Polym. Sci. 221, 1 (2009)

    Google Scholar 

  33. Y. Gambin, R. Lopez-Esparza, M. Reffay, E. Sierecki, N.S. Gov, M. Genest, R.S. Hodges, W. Urbach, Proc. Natl. Acad. Sci. U.S.A. 103, 2098 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Electronic supplementary material

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, MJ., Chen, HY. & Mikhailov, A.S. Nano-swimmers in biological membranes and propulsion hydrodynamics in two dimensions. Eur. Phys. J. E 35, 119 (2012). https://doi.org/10.1140/epje/i2012-12119-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2012-12119-5

Keywords

Navigation