Skip to main content
Log in

Osmotic pressure between arbitrarily charged planar surfaces: A revisited approach

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The properties of ionic solutions between charged surfaces are often studied within the Poisson-Boltzmann framework, by finding the electrostatic potential profile. For example, the osmotic pressure between two charged planar surfaces can be evaluated by solving coupled equations for the electrostatic potential and osmotic pressure. Such a solution relies on symmetry arguments and is restricted to either equally or oppositely charged surfaces. Here, we provide a different and more efficient scheme to derive the osmotic pressure straightforwardly, without the need to find the electrostatic potential profile. We derive analytical expressions for the osmotic pressure in terms of the inter-surface separation, salt concentration, and arbitrary boundary conditions. Such results should be useful in force measurement setups, where the force is measured between two differently prepared surfaces, or between two surfaces held at a fixed potential difference. The proposed method can be systematically used for generalized Poisson-Boltzmann theories in planar geometries, as is demonstrated for the sterically modified Poisson-Boltzmann theory.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.N. Israelachvili, Intermolecular and Surface Forces, 3rd edition (Academic Press, New York, 2011)

  2. E.J. Werwey, J.Th.G. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier, New York, 1948)

  3. T. Markovich, D. Andelman, R. Podgornik, in Handbook of Lipid Membranes, edited by C. Safinya, J. Rädler (Taylor and Francis) to be published

  4. R.M. Adar, D. Andelman, H. Diamant, Adv. Colloids Interface Sci. 247, 198 (2017)

    Article  Google Scholar 

  5. D. Ben-Yaakov, D. Andelman, D. Harries, R. Podgornik, J. Phys. Chem. B 113, 6001 (2009)

    Article  Google Scholar 

  6. A.C. Maggs, R. Podgornik, Soft Matter 12, 1219 (2016)

    Article  ADS  Google Scholar 

  7. D.C. Grahame, Chem. Rev. 41, 441 (1947)

    Article  Google Scholar 

  8. D. Henderson, L. Blum, J. Chem. Phys. 75, 2025 (1981)

    Article  ADS  Google Scholar 

  9. D.F. Evans, H. Wennerstrom, The Colloidal Domain, 2nd edition (VCH Publishers, New York, 1999)

  10. D.S. Dean, R. Horgan, Phys. Rev. E 68, 061106 (2003)

    Article  ADS  Google Scholar 

  11. A.A. Meier-Koll, C.C. Fleck, H.H. von Grünberg, J. Phys.: Condens. Matter 16, 6041 (2004)

    ADS  Google Scholar 

  12. S.A. Safran, Europhys. Lett. 69, 826 (2005)

    Article  ADS  Google Scholar 

  13. M. Abramowicz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965)

  14. V.A. Parsegian, D. Gingell, Biophys. J. 12, 1192 (1972)

    Article  Google Scholar 

  15. A. Lau, P. Pincus, Eur. Phys. J. B 10, 175 (1999)

    Article  ADS  Google Scholar 

  16. D. Ben-Yaakov, Y. Burak, D. Andelman, S.A. Safran, EPL 79, 48002 (2007)

    Article  ADS  Google Scholar 

  17. D. Ben-Yaakov, D. Andelman, H. Diamant, Phys. Rev. E 87, 022402 (2013)

    Article  ADS  Google Scholar 

  18. I. Borukhov, D. Andelman, H. Orland, Phys. Rev. Lett. 79, 435 (1997)

    Article  ADS  Google Scholar 

  19. I. Borukhov, D. Andelman, H. Orland, Electrochim. Acta 46, 221 (2000)

    Article  Google Scholar 

  20. M.S. Kilic, M.Z. Bazant, A. Ajdari, Phys. Rev. E 75, 021502 (2007)

    Article  ADS  Google Scholar 

  21. K.S. Pitzer, J. Phys. Chem. 77, 268 (1973)

    Article  Google Scholar 

  22. B.W. Ninham, V.A. Parsegian, J. Theor. Biol. 31, 405 (1971)

    Article  Google Scholar 

  23. D. Chan, J.W. Perram, L.R. White, T.W. Healy, J. Chem. Soc. Faraday Trans. I 71, 1046 (1975)

    Article  Google Scholar 

  24. T. Markovich, D. Andelman, R. Podgornik, EPL 113, 26004 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Andelman.

Additional information

This article is dedicated to the memory of Loïc Auvray. An outstanding gentleman of science who introduced us to a wealth of physical phenomena and concepts in polymers, polyelectrolytes, biophysics and charged soft matter systems. His unique kindness and deep understanding of physics will always be remembered.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adar, R.M., Andelman, D. Osmotic pressure between arbitrarily charged planar surfaces: A revisited approach. Eur. Phys. J. E 41, 11 (2018). https://doi.org/10.1140/epje/i2018-11620-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11620-1

Keywords

Navigation