Skip to main content
Log in

Geometrical properties of mechanically annealed systems near the jamming transition

  • Regular Article - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Geometrical properties of two-dimensional mixtures near the jamming transition point are numerically investigated using harmonic particles under mechanical training. The configurations generated by the quasi-static compression and oscillatory shear deformations exhibit anomalous suppression of the density fluctuations, known as hyperuniformity, below and above the jamming transition. For the jammed system trained by compression above the transition point, the hyperuniformity exponent increases. For the system below the transition point under oscillatory shear, the hyperuniformity exponent also increases until the shear amplitude reaches the threshold value. The threshold value matches with the transition point from the point-reversible phase where the particles experience no collision to the loop-reversible phase where the particles’ displacements are non-affine during a shear cycle before coming back to an original position. The results demonstrated in this paper are explained in terms of neither of universal criticality of the jamming transition nor the nonequilibrium phase transitions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. In the ensemble-averaging of \(\chi (q)\), we expand the system slightly to fix the simulation box-size for every sample. This is necessary since each sample jams at different volume fractions. We carefully checked that the effect of the small variation of the system size is negligible.

  2. Tjhung et al. argued that \(\alpha \) crosses over to 1 at very small q [23].

References

  1. A.J. Liu, S.R. Nagel, Jamming is not just cool any more. Nature 396(6706), 21 (1998)

    Article  ADS  Google Scholar 

  2. A.J. Liu, S.R. Nagel, W. van Saarloos, M. Wyart, in Dynamical heterogeneities in glasses, colloids, and granular media, ed. by L. Berthier, G. Biroli, J.P. Bouchaud, L. Cipeletti, W. van Saarloos (Oxford UniversityPress, 2010)

  3. M. van Hecke, Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J. Phys. Condens. Matter 22(3), 033101 (2010)

    Article  ADS  Google Scholar 

  4. G. Parisi, P. Urbani, F. Zamponi, Theory of Simple Glasses: Exact Solutions in Infinite Dimensions (Cambridge University Press, Cambridge, 2020)

    Book  MATH  Google Scholar 

  5. M. Ozawa, L. Berthier, D. Coslovich, Exploring the jamming transition over a wide range of critical densities. SciPost Phys. 3, 027 (2017)

    Article  ADS  Google Scholar 

  6. P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, F. Zamponi, Glass and jamming transitions: from exact results to finite-dimensional descriptions. Annu. Rev. Condens. Matter Phys. 8(1), 265 (2017)

    Article  ADS  Google Scholar 

  7. C.S. O’Hern, L.E. Silbert, A.J. Liu, S.R. Nagel, Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys. Rev. E 68, 011306 (2003)

  8. M. Wyart, S.R. Nagel, T.A. Witten, Geometric origin of excess low-frequency vibrational modes in weakly connected amorphous solids. Europhys. Lett. (EPL) 72(3), 486 (2005)

    Article  ADS  Google Scholar 

  9. H. Mizuno, H. Shiba, A. Ikeda, Continuum limit of the vibrational properties of amorphous solids. Proc. Natl. Acad. Sci. 114(46), E9767 (2017)

    Article  ADS  Google Scholar 

  10. Y. Jin, P. Urbani, F. Zamponi, H. Yoshino, A stability-reversibility map unifies elasticity, plasticity, yielding, and jamming in hard sphere glasses. Sci. Adv. 4(12), eaat6387 (2018)

    Article  ADS  Google Scholar 

  11. A. Ikeda, T. Kawasaki, L. Berthier, K. Saitoh, T. Hatano, Universal relaxation dynamics of sphere packings below jamming. Phys. Rev. Lett. 124, 058001 (2020)

    Article  ADS  Google Scholar 

  12. K. Saitoh, T. Hatano, A. Ikeda, B.P. Tighe, Stress relaxation above and below the jamming transition. Phys. Rev. Lett. 124, 118001 (2020)

    Article  ADS  Google Scholar 

  13. D. Vågberg, P. Olsson, S. Teitel, Critical scaling of bagnold rheology at the jamming transition of frictionless two-dimensional disks. Phys. Rev. E 93, 052902 (2016)

    Article  ADS  Google Scholar 

  14. J. Boschan, D. Vågberg, E. Somfai, B.P. Tighe, Beyond linear elasticity: Jammed solids at finite shear strain and rate. Soft Matter 12(24), 5450 (2016)

    Article  ADS  Google Scholar 

  15. T. Kawasaki, D. Coslovich, A. Ikeda, L. Berthier, Diverging viscosity and soft granular rheology in non-brownian suspensions. Phys. Rev. E 91, 012203 (2015)

    Article  ADS  Google Scholar 

  16. M. Otsuki, H. Hayakawa, Avalanche contribution to shear modulus of granular materials. Phys. Rev. E 90, 042202 (2014)

    Article  ADS  Google Scholar 

  17. C. Brito, H. Ikeda, P. Urbani, M. Wyart, F. Zamponi, Universality of jamming of nonspherical particles. Proceedings of the National Academy of Sciences (2018)

  18. S. Torquato, F.H. Stillinger, Local density fluctuations, hyperuniformity, and order metrics. Phys. Rev. E 68, 041113 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  19. S. Torquato, Hyperuniform states of matter. Phys. Rep. 745, 1 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. A. Gabrielli, M. Joyce, FSylos Labini, Glass-like universe: Real-space correlation properties of standard cosmological models. Phys. Rev. D 65, 083523 (2002)

    Article  ADS  Google Scholar 

  21. Y. Jiao, T. Lau, H. Hatzikirou, M. Meyer-Hermann, J.C. Corbo, S. Torquato, Avian photoreceptor patterns represent a disordered hyperuniform solution to a multiscale packing problem. Phys. Rev. E 89, 022721 (2014)

    Article  ADS  Google Scholar 

  22. Q.L. Lei, M.P. Ciamarra, R. Ni, Nonequilibrium strongly hyperuniform fluids of circle active particles with large local density fluctuations. Sci. Adv. 5(1), eaau7423 (2019)

    Article  ADS  Google Scholar 

  23. E. Tjhung, L. Berthier, Criticality and correlated dynamics at the irreversibility transition in periodically driven colloidal suspensions. J. Stat. Mech. Theory Exp. 2016(3), 033501 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. J.H. Weijs, R. Jeanneret, R. Dreyfus, D. Bartolo, Emergent hyperuniformity in periodically driven emulsions. Phys. Rev. Lett. 115, 108301 (2015)

    Article  ADS  Google Scholar 

  25. A. Donev, S. Torquato, F.H. Stillinger, Pair correlation function characteristics of nearly jammed disordered and ordered hard-sphere packings. Phys. Rev. E 71, 011105 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  26. A. Ikeda, L. Berthier, Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids. Phys. Rev. E 92, 012309 (2015)

    Article  ADS  Google Scholar 

  27. A. Ikeda, L. Berthier, G. Parisi, Large-scale structure of randomly jammed spheres. Phys. Rev. E 95, 052125 (2017)

    Article  ADS  Google Scholar 

  28. M.J. Godfrey, M.A. Moore, Absence of hyperuniformity in amorphous hard-sphere packings of nonvanishing complexity. Phys. Rev. Lett. 121, 075503 (2018)

    Article  ADS  Google Scholar 

  29. Y. Zheng, Y.W. Li, M.P. Ciamarra, Hyperuniformity and density fluctuations at a rigidity transition in a model of biological tissues. Soft Matter 16, 5942 (2020)

    Article  ADS  Google Scholar 

  30. S. Mitra, A.D.S. Parmar, P. Leishangthem, S. Sastry, G. Foffi, Hyperuniformity in cyclically driven glasses. J. Stat. Mech. Theory Exp. 2021(3), 033203 (2021)

    Article  MATH  Google Scholar 

  31. Y. Yuan, Y. Jiao, Y. Wang, S. Li, Universality of jammed frictional packing. Phys. Rev. Res. 3, 033084 (2021)

    Article  Google Scholar 

  32. N. Kumar, S. Luding, Memory of jamming-multiscale models for soft and granular matter. Granular Matter 18(3), 58 (2016)

    Article  Google Scholar 

  33. P. Chaudhuri, L. Berthier, S. Sastry, Jamming transitions in amorphous packings of frictionless spheres occur over a continuous range of volume fractions. Phys. Rev. Lett. 104, 165701 (2010)

    Article  ADS  Google Scholar 

  34. M. Ozawa, T. Kuroiwa, A. Ikeda, K. Miyazaki, Jamming transition and inherent structures of hard spheres and disks. Phys. Rev. Lett. 109, 205701 (2012)

    Article  ADS  Google Scholar 

  35. E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, P. Gumbsch, Structural relaxation made simple. Phys. Rev. Lett. 97, 170201 (2006)

    Article  ADS  Google Scholar 

  36. Y. Wu, P. Olsson, S. Teitel, Search for hyperuniformity in mechanically stable packings of frictionless disks above jamming. Phys. Rev. E 92, 052206 (2015)

    Article  ADS  Google Scholar 

  37. A.T. Chieco, M. Zu, A.J. Liu, N. Xu, D.J. Durian, Spectrum of structure for jammed and unjammed soft disks. Phys. Rev. E 98, 042606 (2018)

    Article  ADS  Google Scholar 

  38. L. Berthier, P. Chaudhuri, C. Coulais, O. Dauchot, P. Sollich, Suppressed compressibility at large scale in jammed packings of size-disperse spheres. Phys. Rev. Lett. 106, 120601 (2011)

    Article  ADS  Google Scholar 

  39. T. Kawasaki, K. Miyazaki, Shear jamming and shear melting in mechanically trained frictionless particles. arXiv:2003.10716

  40. R. Dreyfus, Y. Xu, T. Still, L.A. Hough, A.G. Yodh, S. Torquato, Diagnosing hyperuniformity in two-dimensional, disordered, jammed packings of soft spheres. Phys. Rev. E 91, 012302 (2015)

    Article  ADS  Google Scholar 

  41. D. Hexner, A.J. Liu, S.R. Nagel, Two diverging length scales in the structure of jammed packings. Phys. Rev. Lett. 121, 115501 (2018)

    Article  ADS  Google Scholar 

  42. C.E. Zachary, Y. Jiao, S. Torquato, Hyperuniform long-range correlations are a signature of disordered jammed hard-particle packings. Phys. Rev. Lett. 106, 178001 (2011)

    Article  ADS  Google Scholar 

  43. K. Binder, M. Nauenberg, V. Privman, A.P. Young, Finite-size tests of hyperscaling. Phys. Rev. B 31, 1498 (1985)

    Article  ADS  Google Scholar 

  44. D. Hexner, P. Urbani, F. Zamponi, Can a large packing be assembled from smaller ones? Phys. Rev. Lett. 123, 068003 (2019)

    Article  ADS  Google Scholar 

  45. A. Ninarello, L. Berthier, D. Coslovich, Models and algorithms for the next generation of glass transition studies. Phys. Rev. X 7, 021039 (2017)

    Google Scholar 

  46. Q. Liao, L. Berthier, Hierarchical landscape of hard disk glasses. Phys. Rev. X 9, 011049 (2019)

    Google Scholar 

  47. S. Atkinson, F.H. Stillinger, S. Torquato, Detailed characterization of rattlers in exactly isostatic, strictly jammed sphere packings. Phys. Rev. E 88, 062208 (2013)

    Article  ADS  Google Scholar 

  48. A.D.S. Parmar, S. Kumar, S. Sastry, Strain localization above the yielding point in cyclically deformed glasses. Phys. Rev. X 9, 021018 (2019)

    Google Scholar 

  49. W.T. Yeh, M. Ozawa, K. Miyazaki, T. Kawasaki, L. Berthier, Glass stability changes the nature of yielding under oscillatory shear. Phys. Rev. Lett. 124, 225502 (2020)

    Article  ADS  Google Scholar 

  50. H. Bhaumik, G. Foffi, S. Sastry, The role of annealing in determining the yielding behavior of glasses under cyclic shear deformation. Proc. Natl. Acad. Sci. 118(16), e2100227118 (2021)

    Article  Google Scholar 

  51. K. Nagasawa, K. Miyazaki, T. Kawasaki, Classification of the reversible-irreversible transitions in particle trajectories across the jamming transition point. Soft Matter 15, 7557 (2019)

    Article  ADS  Google Scholar 

  52. L. Corte, P.M. Chaikin, J.P. Gollub, D.J. Pine, Random organization in periodically driven systems. Nat. Phys. 4(5), 420 (2008)

    Article  Google Scholar 

  53. D. Hexner, D. Levine, Hyperuniformity of critical absorbing states. Phys. Rev. Lett. 114, 110602 (2015)

    Article  ADS  Google Scholar 

  54. Y. Zheng, A.D.S. Parmar, M. Pica Ciamarra, Hidden order beyond hyperuniformity in critical absorbing states. Phys. Rev. Lett. 126, 118003 (2021)

  55. S. Lúbeck, Universal scaling behavior of non-equilibrium phase transitions. Int. J. Mod. Phys. B Condens. Matter Phys. Stat. Phys. Appl. Phys. 18(31/32), 3977 (2004)

  56. S. Wilken, R.E. Guerra, D.J. Pine, P.M. Chaikin, Hyperuniform structures formed by shearing colloidal suspensions. Phys. Rev. Lett. 125, 148001 (2020)

    Article  ADS  Google Scholar 

  57. J. Wang, J. Schwarz, J.D. Paulsen, Hyperuniformity with no fine tuning in sheared sedimenting suspensions. Nat. Commun. 9(1), 1 (2018)

    Google Scholar 

  58. C.F. Schreck, R.S. Hoy, M.D. Shattuck, C.S. O’Hern, Particle-scale reversibility in athermal particulate media below jamming. Phys. Rev. E 88, 052205 (2013)

  59. H.A. Vinutha, S. Sastry, Disentangling the role of structure and friction in shear jamming. Nat. Phys. 12(6), 578 (2016)

    Article  Google Scholar 

  60. H.A. Vinutha, S. Sastry, Geometric aspects of shear jamming induced by deformation of frictionless sphere packings. J. Stat. Mech. Theory Exp. 2016(9), 094002 (2016)

    Article  Google Scholar 

  61. P. Das, H.A. Vinutha, S. Sastry, Unified phase diagram of reversible–irreversible, jamming, and yielding transitions in cyclically sheared soft-sphere packings. Proc. Natl. Acad. Sci. 117(19), 10203 (2020)

    Article  Google Scholar 

  62. T. Kawasaki, L. Berthier, Macroscopic yielding in jammed solids is accompanied by a nonequilibrium first-order transition in particle trajectories. Phys. Rev. E 94, 022615 (2016)

    Article  ADS  Google Scholar 

  63. S. Dagois-Bohy, E. Somfai, B.P. Tighe, M. van Hecke, Softening and yielding of soft glassy materials. Soft Matter 13, 9036 (2017)

    Article  ADS  Google Scholar 

  64. M. Shukawa, H. Matsuyama, T. Kawasaki, K. Miyazaki (unpublished)

Download references

Acknowledgements

Discussion with Srikanth Sastry and Misaki Ozawa is very fruitful. This work was financially supported by KAKENHI Grants 18H01188, 19H01812, 19K03767, 20H05157, and 20H00128.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunimasa Miyazaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuyama, H., Toyoda, M., Kurahashi, T. et al. Geometrical properties of mechanically annealed systems near the jamming transition. Eur. Phys. J. E 44, 133 (2021). https://doi.org/10.1140/epje/s10189-021-00142-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00142-6

Navigation