Skip to main content
Log in

The classical and quantum synchronization between two scattering modes in Bose–Einstein condensates

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The classical and quantum synchronization between two nonlinear mechanical modes of Bose–Einstein condensates is investigated by different types of measures in order to reveal macroscopic and microscopic properties of synchronized behaviors in a closed quantum system. The classical measure synchronization (CMS) is studied by Pearson correlation coefficient, the orbital overlapping and covering areas in the phase space based on mean-value dynamical equations. The dynamical transitions of CMS are analyzed with phase diagrams in the parametric plane of population imbalance and phase difference between two modes in a wide range of mode coupling rate. Based on Husimi Q functions, the synchronized behaviors of quantum measure synchronization (QMS) are displayed by density overlapping and correlated probability dynamics in phase space, and further investigated by two quantum measures: Mari measure and mutual information. These results demonstrate that the “revival and collapse” of quantum fluctuations beyond mean-value dynamics discriminates QMS from CMS. The overwhelming dynamics of error fluctuations not only excludes complete CMS and perfect phase overlap in QMS, but also leads to upper bound to Mari measure and unceasing oscillations of mutual information. We reveal that the correlation between Mari measure and mutual information for QMS is derived from the similar dynamics of error fluctuations with respect to their opposite mean-value behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C. Brif, R. Chakrabarti, H. Rabitz, New J. Phys. 12, 075008 (2010)

    Article  ADS  Google Scholar 

  2. H. Wiseman, Quantum Measurement and Control (Cambridge University Press, Cambridge, 2010)

    MATH  Google Scholar 

  3. M. Bagheri, M. Poot, M. Li, W.P.H. Pernice, H.X. Tang, Nat. Nanotechnol. 6, 726 (2011)

    Article  ADS  Google Scholar 

  4. S.B. Shim, M. Imboden, P. Mohanty, Science 316, 95 (2007)

    Article  ADS  Google Scholar 

  5. L. Ying, Y.C. Lai, C. Grebogi, Phys. Rev. A 90, 053810 (2014)

    Article  ADS  Google Scholar 

  6. P.P. Orth, D. Roosen, W. Hofstetter, K.L. Hur, Phys. Rev. B 82, 144423 (2010)

    Article  ADS  Google Scholar 

  7. M.R. Hush, Weibin Li, Sam Genway, Igor Lesanovsky, Andrew D. Armour, Phys. Rev. A 91, 061401(R) (2015)

    Article  ADS  Google Scholar 

  8. C.A. Holmes, C.P. Meaney, G.J. Milburn, Phys. Rev. E 85, 066203 (2012)

    Article  ADS  Google Scholar 

  9. K. Shlomi, D. Yuvaraj, I. Baskin, O. Suchoi, R. Winik, E. Buks, Phys. Rev. E 91, 032910 (2015)

    Article  ADS  Google Scholar 

  10. G. Heinrich, M. Ludwig, J. Qian, B. Kubala, F. Marquardt, Phys. Rev. Lett. 107, 043603 (2011)

    Article  ADS  Google Scholar 

  11. M. Zhang, G.S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, M. Lipson, Phys. Rev. Lett. 109, 233906 (2012)

    Article  ADS  Google Scholar 

  12. H. Moritz, T. Stöferle, M. Köhl, T. Esslinger, Phys. Rev. Lett. 91, 250402 (2003)

    Article  ADS  Google Scholar 

  13. F. Brennecke, F. Ritter, T. Donner, T. Esslinger, Science 322, 235 (2008)

    Article  ADS  Google Scholar 

  14. A. Mari, A. Farace, N. Didier, V. Giovannetti, R. Fazio, Phys. Rev. Lett. 111, 103605 (2013)

    Article  ADS  Google Scholar 

  15. V. Ameri, M. Eghbali-Arani, A. Mari, A. Farace, F. Kheirandish, V. Giovannetti, R. Fazio, Phys. Rev. A 91, 012301 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  16. I. Goychuk, J. Casado-Pascual, M. Morillo, J. Lehmann, P. Hänggi, Phys. Rev. Lett. 97, 210601 (2006)

    Article  ADS  Google Scholar 

  17. O.V. Zhirov, D.L. Shepelyansky, Phys. Rev. Lett. 100, 014101 (2008)

    Article  ADS  Google Scholar 

  18. D.K. Agrawal, J. Woodhouse, A.A. Seshia, Phys. Rev. Lett. 111, 084101 (2013)

    Article  ADS  Google Scholar 

  19. T.E. Lee, H.R. Sadeghpour, Phys. Rev. Lett. 111, 234101 (2013)

    Article  ADS  Google Scholar 

  20. M.H. Matheny, Matt Grau, L.G. Villanueva, R.B. Karabalin, M.C. Cross, M.L. Roukes, Phys. Rev. Lett. 112, 014101 (2014)

    Article  ADS  Google Scholar 

  21. S. Walter, A. Nunnenkamp, C. Bruder, Phys. Rev. Lett. 112, 094102 (2014)

    Article  ADS  Google Scholar 

  22. J. Gieseler, M. Spasenović, L. Novotny, R. Quidant, Phys. Rev. Lett. 112, 103603 (2014)

    Article  ADS  Google Scholar 

  23. G.L. Giorgi, F. Galve, G. Manzano, P. Colet, R. Zambrini, Phys. Rev. A 85, 052101 (2012)

    Article  ADS  Google Scholar 

  24. G.M. Xue, M. Gong, H.K. Xu, W.Y. Liu, H. Deng, Y. Tian et al., Phys. Rev. B 90, 224505 (2014)

    Article  ADS  Google Scholar 

  25. Weiping Zhang, D.F. Walls, Phys. Rev. A 52, 4696 (1995)

    Article  ADS  Google Scholar 

  26. A. Balanov, N. Janson, D. Postnov, O. Sosnovtseva, Synchronization: From Simple to Complex (Springer, Berlin, 2009)

    MATH  Google Scholar 

  27. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2001)

    Book  Google Scholar 

  28. S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, C.S. Zhou, Phys. Rep. 366, 1 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  29. A. Hampton, D.H. Zanette, Phys. Rev. Lett. 83, 2179 (1999)

    Article  ADS  Google Scholar 

  30. H. Qiu, B. Juliá-Díaz, M.A. Garcia-March, A. Polls, Phys. Rev. A 90, 033603 (2014)

    Article  ADS  Google Scholar 

  31. G. Manzano, F. Galve, G.L. Giorgi, E. Hernández-García, R. Zambrini, Sci. Rep. 3, 1439 (2013)

    Article  ADS  Google Scholar 

  32. Lin Zhang, Appl. Phys. B Lasers Opt. 111, 195 (2013)

    Article  ADS  Google Scholar 

  33. A. Smerzi, S. Fantoni, S. Giovanazzi, S.R. Shenoy, Phys. Rev. Lett. 79, 4950 (1997)

    Article  ADS  Google Scholar 

  34. U.E. Vincent, New J. Phys. 7, 209 (2005)

    Article  ADS  Google Scholar 

  35. F. Galve, G.L. Giorgi, R. Zambrini, Lectures on General Quantum Correlations and their Applications (Springer, Berlin, 2017), pp. 393–420

    Book  Google Scholar 

  36. Wen-Yuan Wang, Jie Liu, Fu Li-Bin, Phys. Rev. A 92, 053608 (2015)

    Article  ADS  Google Scholar 

  37. Jing Tian, Haibo Qiu, Guanfang Wang, Yong Chen, Fu Li-bin, Phys. Rev. E 88, 032906 (2013)

    Article  ADS  Google Scholar 

  38. W. Barth, R.S. Martin, J.H. Wilkinson, Numer. Math. 9, 386 (1967)

    Article  MathSciNet  Google Scholar 

  39. G. Kirchmair, B. Vlastakis, Z. Leghtas, S.E. Nigg, H. Paik, E. Ginossar, M. Mirrahimi, L. Frunzio, S.M. Girvin, R.J. Schoelkopf, Nature 495, 205 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are thankful to Keye Zhang for the useful discussions and suggestions. This work is supported by the National Natural Science Foundation of China (Grants Nos. 11447025 and 11234003) and the National Basic Research Program of China (973 Program) under Grant No. 2011CB921604.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Xu, X. & Zhang, W. The classical and quantum synchronization between two scattering modes in Bose–Einstein condensates. Eur. Phys. J. Plus 135, 202 (2020). https://doi.org/10.1140/epjp/s13360-020-00179-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00179-0

Navigation