Skip to main content

Advertisement

Log in

Thermodynamic phase transition for quintessence dyonic anti-de Sitter black holes

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We study the thermodynamics of a dyonic AdS black hole surrounded by quintessence dark energy where negative cosmological constant of AdS space behaves as pressure of the black hole. We choose grand canonical ensemble of the black hole where its magnetic charge \(Q_{\mathrm{M}}\) and electric potential \(\Phi _{\mathrm{E}}\) are held as constant. Our goal in this work is to study the physical effects of the magnetic charge and electric potential on the thermodynamic phase transition of the black hole in the presence of quintessence dark energy. When barotropic index of the quintessence is \(\omega =-\frac{7}{9}\), we obtained that compressibility factor of the black hole reduces to \(Z_{\mathrm{c}}=\frac{3}{8}\) which corresponds to the van der Waals fluid. We obtained analogy between the small/large black hole phase transition and liquid/gas phase transition of the van der Waals fluid. Numerical calculations predict that the black hole may born plasma phase which is the fourth different state of the matter which does not appear in the van der Waals fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R. Arnowitt, S. Deser, C.W. Misner, Canonical variables for general relativity. Phys. Rev. 117, 1595 (1960)

    Google Scholar 

  2. R. Arnowitt, S. Deser, C.W. Misner, Coordinate invariance and energy expressions in general relativity. Phys. Rev. 122, 997 (1961)

    Google Scholar 

  3. M. Henneaux, C. Teitelboim, Asymptotically anti-de Sitter spaces. Commun. Math. Phys. 98, 391 (1985)

    Google Scholar 

  4. S. Wang, S.-Q. Wu, F. Xie, L. Dan, The first law of thermodynamics of the (2+1)-dimensional BTZ black holes and Kerr–de Sitter spacetimes. Chin. Phys. Lett. 23, 1096 (2006)

    Google Scholar 

  5. Y. Sekiwa, Thermodynamics of de Sitter black holes: thermal cosmological constant. Phys. Rev. D 73, 084009 (2006)

    Google Scholar 

  6. K. Ball, Volume ratios and a reverse isoperimetric inequality. J. Lond. Math. Soc. arXiv:math/9201205 [math.MG] (1991)

  7. M. Cvetic, G. Gibbons, D. Kubiznak, C. Pope, Black hole enthalpy and an entropy inequality for the thermodynamic volume. Phys. Rev. D 84, 024037 (2011)

    Google Scholar 

  8. B.P. Dolan, Pressure and volume in the first law of black hole thermodynamics. Class. Quant. Gravit. 28, 235017 (2011). arXiv:gr-qc/1106.6260

  9. D. Kubiznak, R.B. Mann, P V criticality of charged AdS black holes. JHEP 2012, 033 (2012)

    Google Scholar 

  10. S. Dutta, A. Jain, R. Soni, Dyonic black hole and holography. JHEP 2013, 60 (2013). arXiv:hep-th/1310.1748

  11. X.X. Zeng, L.F. Li, Van der Waals phase transition in the framework of holography. arXiv:hep-th/1512.08855 (2017)

  12. S.A. Hartnoll, C.P. Herzog, G.T. Horowitz, Phys. Rev. Lett. 101, 031601 (2008). arXiv:hep-th/0803.3295

  13. S.A. Hartnoll, C.P. Herzog, G.T. Horowitz, JHEP. 0812, 015 (2008). arXiv:hep-th/0810.1563

  14. S.A. Hartnoll, P. Kovtun, Phys. Rev. D 76, 066001 (2007). arXiv:hep-th/0704.1160

  15. M.M. Caldarelli, O.J.C. Dias, D. Klemm, JHEP 0903, 025 (2009). arXiv:hep-th/0812.0801

  16. S.A. Hartnoll, P.K. Kovtun, M. Muller, S. Sachdev, Phys. Rev. B 76, 144502 (2007)

    Google Scholar 

  17. N.A. Bachall, J.P. Ostriker, S. Perlmutter, P.J. Steinhardt, The cosmic triangle: revealing the state of the universe. Science 284, 1481 (1999)

    Google Scholar 

  18. S.J. Perlmutter et al., Measurements of omega and lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999)

    Google Scholar 

  19. V. Sahni, A.A. Starobinsky, The case for a positive cosmological lambda-term. Int. J. Mod. Phys. D 9, 373 (2000)

    Google Scholar 

  20. Shinji Tsujikawa, Quintessence: a review. Class. Quant. Gravit. 30, 214003 (2013)

    Google Scholar 

  21. L.H. Ford, Cosmological-constant damping by unstable scalar fields. Phys. Rev. D 35, 2339 (1987)

    Google Scholar 

  22. Y. Fujii, Origin of the gravitational constant and particle masses in a scale invariant scalar-tensor theory. Phys. Rev. D 26, 2580 (1982)

    Google Scholar 

  23. V.V. Kiselev, Quintessence and black holes. Class. Quant. Gravit. 20, 1187 (2003). arXiv:gr-qc/0210040

    Google Scholar 

  24. Y. Zhang, Y.X. Gui, F.L. Li, Quasinormal modes of a Schwarzschild black hole surrounded by quintessence: electromagnetic perturbations. Gen. Relat. Gravit. 39, 1003 (2007)

    Google Scholar 

  25. N. Varghese, V.C. Kuriakose, Massive charged scalar quasinormal modes of Reissner–Nordstrom black hole surrounded by quintessence. Gen. Relat. Gravit. 41, 1249 (2009)

    Google Scholar 

  26. S. Chen, Q. Pan, J. Jing, Holographic superconductors in quintessence AdS black hole spacetime. Class. Quant. Gravit. 30, 145001 (2013)

    Google Scholar 

  27. R.H. Swendsen, An Introduction to Statistical Mechanics and Thermodynamics (Oxford University Press, Oxford, 2012)

    Google Scholar 

  28. P.H. Nguyen, An equal area law for holographic entanglement entropy of the AdS-RN black hole. JHEP 12, 139 (2015). arXiv:hep-th/1508.01955

    Google Scholar 

  29. G.Q. Li, Effects of dark energy on P-V criticality of charged AdS black holes. Phys. Lett. B 06, 260 (2014). arXiv:gr-qc/1407.0011

    Google Scholar 

  30. H. Liu, X.H. Meng, Effects of dark energy on the efficiency of charged AdS black holes as heat engine. Eur. Phys. J. C 77, 556 (2017). arXiv:hep-th/1704.04363v4

    Google Scholar 

  31. J.D. Bekenstein, Black holes and entropy. Phys. Rev. D 7, 2333 (1973)

    Google Scholar 

  32. E. Papantonopoulos, Physics of Black Holes, vol. 769, Lecture Notes in Physics (Springer, Berlin, 2009)

    Google Scholar 

  33. B. DeMarco, J. Bohn, E. Cornell, Pioneer of ultracold quantum physics. Nature 538, 318 (2006)

    Google Scholar 

  34. C.A. Regal, M. Greiner, D.S. Jin, Observation of resonance condensation of Fermionic atom pairs. Phys. Rev. Lett. 92, 040403 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Ghaffarnejad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaffarnejad, H., Yaraie, E. & Farsam, M. Thermodynamic phase transition for quintessence dyonic anti-de Sitter black holes. Eur. Phys. J. Plus 135, 179 (2020). https://doi.org/10.1140/epjp/s13360-020-00211-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00211-3

Navigation