Skip to main content
Log in

Brane inflation and the robustness of the Starobinsky inflationary model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The first inflationary model conceived was the one proposed by Starobinsky which includes an additional term quadratic in the Ricci-scalar R in the Einstein–Hilbert action. The model is now considered a target for several future cosmic microwave background experiments given its compatibility with current observational data. In this paper, we analyse the robustness of the Starobinsky inflation by inserting it into a generalized scenario based on a \(\beta \)-Starobinsky inflation potential, which is motivated through brane inflation. In the Einstein frame, the generalized model recovers the original model for \(\beta = 0\), whereas \(\forall \beta \ne 0\) represents an extended class of models that admit a wider range of solutions. We investigate limits on \(\beta \) from current cosmic microwave background and baryonic acoustic oscillation data and find that only a small deviation from the original scenario is allowed, \(\beta =-0.08 \pm 0.12\) (\(68\%\) C.L.), which is fully compatible with zero and confirms the robustness of the Starobinsky inflationary model in light of current observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, Cambridge, 2005)

    Book  Google Scholar 

  2. S. Weinberg, Cosmology (OUP OXford, Oxford, 2008)

    MATH  Google Scholar 

  3. L. Senatore, Lectures on Inflation, [arXiv:1609.00716 [hep-th]]

  4. P.A.R. Ade et al., Astron. Astrophys. 594, A13 (2016). [Planck Collaboration]

    Article  Google Scholar 

  5. N. Aghanim et al., Astron. Astrophys. 641, A6 (2020). [Planck Collaboration]

    Article  Google Scholar 

  6. J. Martin, C. Ringeval, R. Trotta, V. Vennin, JCAP 03, 039 (2014)

    ADS  Google Scholar 

  7. A.A. Starobinsky, Phys. Lett. 91B, 99 (1980)

    Article  ADS  Google Scholar 

  8. A.A. Starobinsky, Adv. Ser. Astrophys. Cosmol. 3, 130 (1987)

    Google Scholar 

  9. S.V. Ketov, J. Phys. A 53, 084001 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Linde, M. Noorbala, A. Westphal, JCAP 1103, 013 (2011)

    Article  ADS  Google Scholar 

  11. R. Kallosh, A. Linde, JCAP 1306, 028 (2013)

    Article  ADS  Google Scholar 

  12. A. Kehagias, A. Moradinezhad Dizgah, A. Riotto, Phys. Rev. D 89, 043527 (2014)

    Article  ADS  Google Scholar 

  13. W. Buchmuller, V. Domcke, K. Kamada, Phys. Lett. B 726, 467–470 (2013)

    Article  ADS  Google Scholar 

  14. M. Benetti, S. Capozziello, L.L. Graef, Phys. Rev. D 100, 084013 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  15. S. Capozziello, G.G. Saj, D. Vernieri, JCAP 01, 015 (2016)

    Article  ADS  Google Scholar 

  16. K. N. Abazajian, et al. [CMB-S4], [arXiv:1610.02743 [astro-ph.CO]]

  17. A. Suzuki et al., J. Low. Temp. Phys. 193, 1048 (2018)

    Article  ADS  Google Scholar 

  18. P. Ade et al., JCAP 02, 056 (2019). [Simons Observatory]

    Article  ADS  Google Scholar 

  19. C. van de Bruck, L.E. Paduraru, Phys. Rev. D 92, 083513 (2015)

    Article  ADS  Google Scholar 

  20. F. Renzi, M. Shokri, A. Melchiorri, Phys. Dark Univ. 27, 100450 (2020)

    Article  Google Scholar 

  21. L. Sebastiani, G. Cognola, R. Myrzakulov, S.D. Odintsov, S. Zerbini, Phys. Rev. D 89, 023518 (2014)

    Article  ADS  Google Scholar 

  22. R. Myrzakulov, S. Odintsov, L. Sebastiani, Phys. Rev. D 91, 083529 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  23. J.S. Alcaniz, F.C. Carvalho, EPL 79, 39001 (2007)

    Article  ADS  Google Scholar 

  24. M.A. Santos, M. Benetti, J. Alcaniz, F.A. Brito, R. Silva, JCAP 1803, 023 (2018)

    Article  ADS  Google Scholar 

  25. Ø. Grøn, Universe 4, 15 (2018)

    Article  ADS  Google Scholar 

  26. P. Binetruy, C. Deffayet, D. Langlois, Nul. Phys. B 565, 269 (2000)

    Article  ADS  Google Scholar 

  27. P. Binetruy, C. Deffayet, U. Ellwanger, D. Langlois, Phys. Lett. B 477, 285 (2000)

    Article  ADS  Google Scholar 

  28. M. Campista, M. Benetti, J. Alcaniz, JCAP 1709, 010 (2017)

    Article  ADS  Google Scholar 

  29. A. Lewis, A. Challinor, A. Lasenby, Astrophys. J. 538, 473 (2000)

    Article  ADS  Google Scholar 

  30. A. Lewis, S. Bridle, Phys. Rev. D 66, 103511 (2002)

    Article  ADS  Google Scholar 

  31. N. Aghanim et al., Astron. Astrophys. 594, A11 (2016). [Planck Collaboration]

    Article  Google Scholar 

  32. F. Beutler et al., Mon. Not. R. Astron. Soc. 416, 3017 (2011)

    Article  ADS  Google Scholar 

  33. A.J. Ross et al., Mon. Not. R. Astron. Soc. 449, 835 (2015)

    Article  ADS  Google Scholar 

  34. L. Anderson et al., Mon. Not. R. Astron. Soc. 441, 24 (2014). (BOSS Collaboration)

    Article  ADS  Google Scholar 

  35. P.A.R. Ade et al., Phys. Rev. Lett. 114, 101301 (2015). (BICEP2 and Planck Collaborations)

    Article  ADS  Google Scholar 

  36. P.A.R. Ade et al., Phys. Rev. Lett. 116, 031302 (2016). (BICEP2 and Keck Array Collaborations)

    Article  ADS  Google Scholar 

  37. G. Schwarz, Ann. Statist. 6, 2 (1978)

    Article  Google Scholar 

  38. R. Kass, A. Raftery, J. Am. Statist. Assoc. 90, 773 (1995)

    Article  Google Scholar 

  39. B. Zwiebach, Phys. Lett. B 156, 315–317 (1985)

    Article  ADS  Google Scholar 

  40. T. Padmanabhan, D. Kothawala, Phys. Rept. 531, 115–171 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S. Santos da Costa acknowledges financial support from the Programa de Capacitação Institucional (PCI) do Observatório Nacional/MCTI. M. Benetti acknowledges Istituto Nazionale di Fisica Nucleare (INFN), sezione di Napoli, iniziativa specifica QGSKY. R.M.P. Neves is supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). F.A. Brito acknowledges support from Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq (Grant no. 312104/2018-9) and PRONEX/CNPq/FAPESQ-PB (Grant no. 165/2018). R. Silva acknowledges financial support from CNPq (Grant No. 303613/2015-7). J. Alcaniz is supported by CNPq (Grants no. 310790/2014-0 and 400471/2014-0) and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro FAPERJ (grant no. 233906). We also acknowledge the authors of the ModeCode (M. Mortonson, H. Peiris and R. Easther) and CosmoMC (A. Lewis) codes. This work was developed thanks to the High Performance Computing Center at the Universidade Federal do Rio Grande do Norte (NPAD/UFRN) and the Observatório Nacional Data Center (DCON).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Santos da Costa.

Additional information

Focus Point on Modified Gravity Theories and Cosmology Guest editors: S. Capozziello, V. Gurzadyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos da Costa, S., Benetti, M., Neves, R.M.P. et al. Brane inflation and the robustness of the Starobinsky inflationary model. Eur. Phys. J. Plus 136, 84 (2021). https://doi.org/10.1140/epjp/s13360-020-01015-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-01015-1

Navigation