Skip to main content
Log in

Light sail boosted by instantaneous radiation pressure

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Light sail acceleration by ultrashort, superintense laser pulses is presently investigated as an approach to compact accelerators of matter. The usual light sail equation assumes a cycle-averaged light pressure, which becomes questionable for ultrashort pulse drivers or in the highly relativistic regime. Here, we remove such assumption and compute solutions of the light sail equations which show oscillations of the sail acceleration. The dependence of the final sail velocity on the temporal profile of extremely short pulses is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. G. Marx, Nature 211, 22 (1966). https://doi.org/10.1038/211022a0

    Article  ADS  Google Scholar 

  2. R.L. Forward, J. Spacecraft 21, 187 (1984). https://doi.org/10.2514/3.8632

    Article  Google Scholar 

  3. A. Finkbeiner, Sci. Am. 316, 30 (2017). https://doi.org/10.1038/scientificamerican0317-30

    Article  Google Scholar 

  4. D. Kipping, Astron. J. 153, 277 (2017). https://doi.org/10.3847/1538-3881/aa729d

    Article  ADS  Google Scholar 

  5. J.F.L. Simmons, C.R. McInnes, Am. J. Phys. 61, 205 (1993). https://doi.org/10.1119/1.17291

    Article  ADS  Google Scholar 

  6. H. Milchberg, Phys. Today (2016). https://doi.org/10.1063/PT.5.2035

    Article  Google Scholar 

  7. D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985). https://doi.org/10.1016/0030-4018(85)90120-8

    Article  ADS  Google Scholar 

  8. D. Strickland, Rev. Mod. Phys. 91, 030502 (2019). https://doi.org/10.1103/RevModPhys.91.030502

    Article  ADS  Google Scholar 

  9. G. Mourou, Rev. Mod. Phys. 91, 030501 (2019). https://doi.org/10.1103/RevModPhys.91.030501

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Macchi, M. Borghesi, M. Passoni, Rev. Mod. Phys. 85, 751 (2013). https://doi.org/10.1103/RevModPhys.85.751

    Article  ADS  Google Scholar 

  11. T. Esirkepov, M. Borghesi, S.V. Bulanov, G. Mourou, T. Tajima, Phys. Rev. Lett. 92, 175003 (2004). https://doi.org/10.1103/PhysRevLett.92.175003

    Article  ADS  Google Scholar 

  12. X. Zhang, B. Shen, X. Li, Z. Jin, F. Wang, Phys. Plasmas 14, 073101 (2007). https://doi.org/10.1063/1.2746810

    Article  ADS  Google Scholar 

  13. O. Klimo, J. Psikal, J. Limpouch, V.T. Tikhonchuk, Phys. Rev. ST Accel. Beams 11, 031301 (2008). https://doi.org/10.1103/PhysRevSTAB.11.031301

    Article  ADS  Google Scholar 

  14. A.P.L. Robinson, M. Zepf, S. Kar, R.G. Evans, C. Bellei, New J. Phys. 10, 013021 (2008). https://doi.org/10.1088/1367-2630/10/1/013021

    Article  ADS  Google Scholar 

  15. A. Macchi, F. Cattani, T.V. Liseykina, F. Cornolti, Phys. Rev. Lett. 94, 165003 (2005). https://doi.org/10.1103/PhysRevLett.94.165003

    Article  ADS  Google Scholar 

  16. A. Henig, S. Steinke, M. Schnürer, T. Sokollik, R. Hörlein, D. Kiefer, D. Jung, J. Schreiber, B.M. Hegelich, X.Q. Yan, J.M. ter Vehn, T. Tajima, P.V. Nickles, W. Sandner, D. Habs, Phys. Rev. Lett. 103, 245003 (2009). https://doi.org/10.1103/PhysRevLett.103.245003

    Article  ADS  Google Scholar 

  17. S. Kar, K.F. Kakolee, B. Qiao, A. Macchi, M. Cerchez, D. Doria, M. Geissler, P. McKenna, D. Neely, J. Osterholz, R. Prasad, K. Quinn, B. Ramakrishna, G. Sarri, O. Willi, X.Y. Yuan, M. Zepf, M. Borghesi, Phys. Rev. Lett. 109, 185006 (2012). https://doi.org/10.1103/PhysRevLett.109.185006

    Article  ADS  Google Scholar 

  18. S. Steinke, P. Hilz, M. Schnürer, G. Priebe, J. Bränzel, F. Abicht, D. Kiefer, C. Kreuzer, T. Ostermayr, J. Schreiber, A.A. Andreev, T.P. Yu, A. Pukhov, W. Sandner, Phys. Rev. ST Accel. Beams 16, 011303 (2013). https://doi.org/10.1103/PhysRevSTAB.16.011303

    Article  ADS  Google Scholar 

  19. J.H. Bin, W.J. Ma, H.Y. Wang, M.J.V. Streeter, C. Kreuzer, D. Kiefer, M. Yeung, S. Cousens, P.S. Foster, B. Dromey, X.Q. Yan, R. Ramis, J. Meyer-ter Vehn, M. Zepf, J. Schreiber, Phys. Rev. Lett. 115, 064801 (2015). https://doi.org/10.1103/PhysRevLett.115.064801

    Article  ADS  Google Scholar 

  20. C. Scullion, D. Doria, L. Romagnani, A. Sgattoni, K. Naughton, D.R. Symes, P. McKenna, A. Macchi, M. Zepf, S. Kar, M. Borghesi, Phys. Rev. Lett. 119, 054801 (2017). https://doi.org/10.1103/PhysRevLett.119.054801

    Article  ADS  Google Scholar 

  21. F. Pegoraro, S.V. Bulanov, Phys. Rev. Lett. 99, 065002 (2007). https://doi.org/10.1103/PhysRevLett.99.065002

    Article  ADS  Google Scholar 

  22. V. Khudik, S.A. Yi, C. Siemon, G. Shvets, Phys. Plasmas 21, 013110 (2014). https://doi.org/10.1063/1.4863845

    Article  ADS  Google Scholar 

  23. A. Sgattoni, S. Sinigardi, L. Fedeli, F. Pegoraro, A. Macchi, Phys. Rev. E 91, 013106 (2015). https://doi.org/10.1103/PhysRevE.91.013106

    Article  ADS  Google Scholar 

  24. B. Eliasson, New J. Phys. 17, 033026 (2015). https://doi.org/10.1088/1367-2630/17/3/033026

    Article  ADS  Google Scholar 

  25. M.L. Zhou, X.Q. Yan, G. Mourou, J.A. Wheeler, J.H. Bin, J. Schreiber, T. Tajima, Phys. Plasmas 23, 043112 (2016). https://doi.org/10.1063/1.4947544

    Article  ADS  Google Scholar 

  26. X.Z. Wu, Z. Gong, Y.R. Shou, Y.H. Tang, J.Q. Yu, G. Mourou, X.Q. Yan, Phys. Plasmas 28, 023102 (2021). https://doi.org/10.1063/5.0029171

    Article  ADS  Google Scholar 

  27. M. Sangal, M. Tamburini, High-energy and high-quality ion beams in light sail acceleration (2020). arXiv:2002.11563 [physics.plasm-ph]

  28. T. Brabec, F. Krausz, Rev. Mod. Phys. 72, 545 (2000). https://doi.org/10.1103/RevModPhys.72.545

    Article  ADS  Google Scholar 

  29. M.Y. Shverdin, D.R. Walker, D.D. Yavuz, G.Y. Yin, S.E. Harris, Phys. Rev. Lett. 94, 033904 (2005). https://doi.org/10.1103/PhysRevLett.94.033904

    Article  ADS  Google Scholar 

  30. G. Mourou, S. Mironov, E. Khazanov, A. Sergeev, Eur. Phys. J. Spec. Top. 223, 1181–1188 (2014). https://doi.org/10.1140/epjst/e2014-02171-5

    Article  Google Scholar 

  31. A. Macchi, S. Veghini, F. Pegoraro, Phys. Rev. Lett. 103, 085003 (2009). https://doi.org/10.1103/PhysRevLett.103.085003

    Article  ADS  Google Scholar 

  32. V.K. Tripathi, C.S. Liu, X. Shao, B. Eliasson, R.Z. Sagdeev, Plasma Phys. Control. Fusion 51, 024014 (2009). https://doi.org/10.1088/0741-3335/51/2/024014

    Article  ADS  Google Scholar 

  33. B. Eliasson, C.S. Liu, X. Shao, R.Z. Sagdeev, P.K. Shukla, New J. Phys. 11, 073006 (2009). https://doi.org/10.1088/1367-2630/11/7/073006

    Article  ADS  Google Scholar 

  34. A. Macchi, S. Veghini, T.V. Liseykina, F. Pegoraro, New J. Phys. 12, 045013 (2010). https://doi.org/10.1088/1367-2630/12/4/045013

    Article  ADS  Google Scholar 

  35. S.V. Bulanov, E.Y. Echkina, T.Z. Esirkepov, I.N. Inovenkov, M. Kando, F. Pegoraro, G. Korn, Phys. Rev. Lett. 104, 135003 (2010). https://doi.org/10.1103/PhysRevLett.104.135003

    Article  ADS  Google Scholar 

  36. M. Grech, S. Skupin, A. Diaw, T. Schlegel, V.T. Tikhonchuk, New J. Phys. 13, 123003 (2011). https://doi.org/10.1088/1367-2630/13/12/123003

    Article  ADS  Google Scholar 

  37. S.S. Bulanov, C.B. Schroeder, E. Esarey, W.P. Leemans, Phys. Plasmas 19, 093112 (2012). https://doi.org/10.1063/1.4752214

    Article  ADS  Google Scholar 

  38. V.A. Vshivkov, N.M. Naumova, F. Pegoraro, S.V. Bulanov, Phys. Plasmas 5, 2727 (1998). https://doi.org/10.1063/1.872961

    Article  ADS  Google Scholar 

  39. S.V. Bulanov, T.Z. Esirkepov, M. Kando, S.S. Bulanov, S.G. Rykovanov, F. Pegoraro, Phys. Plasmas 20, 123114 (2013). https://doi.org/10.1063/1.4848758

    Article  ADS  Google Scholar 

  40. S.V. Bulanov, T.Z. Esirkepov, M. Kando, J. Koga, Plasma Sources Sci. Technol. 25, 053001 (2016). https://doi.org/10.1088/0963-0252/25/5/053001

    Article  ADS  Google Scholar 

  41. J.R. Van Meter, S. Carlip, F.V. Hartemann, Am. J. Phys. 69, 783 (2001). https://doi.org/10.1119/1.1359517D

    Article  ADS  Google Scholar 

  42. R. Sauerbrey, Phys. Plasmas 3, 4712 (1996). https://doi.org/10.1063/1.872038

    Article  ADS  Google Scholar 

  43. C. Livi, Laser acceleration of ultrathin foils: Light Sail and Single Cycle regimes. Master’s thesis, Department of Physics, University of Pisa (2016). https://etd.adm.unipi.it/theses/available/etd-09132016-134659

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Macchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pegoraro, F., Livi, C. & Macchi, A. Light sail boosted by instantaneous radiation pressure. Eur. Phys. J. Plus 136, 485 (2021). https://doi.org/10.1140/epjp/s13360-021-01357-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01357-4

Navigation