Skip to main content
Log in

Angular deviations: from a cubic equation to a universal closed formula to determine the peak position of reflected and (upper) transmitted beams

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Angular deviations and lateral displacements are optical effects widely investigated in the literature. In this paper, by using the Taylor expansion of the Fresnel coefficients, we obtain an analytic expression for the beam reflected by and (upper) transmitted through a dielectric prism. These analytical approximations lead to a cubic equation which allows to determine the angular deviations of the optical beams. Near the Brewster angles, under specific conditions, we obtain a universal formulation for the cubic equation. Its explicit solution determines the peak position of the reflected and (upper) transmitted beams. The universal solution could be of great utility in future experimental implementations. The analytic results show an excellent agreement with the numerical calculation, and the analytic expressions given for the reflected and (upper) transmitted beams should play an important role in the weak measurements analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Born, E. Wolf, Principles of optics (Cambridge UP, Cambridge, 1999)

    Book  Google Scholar 

  2. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics (Wiley & Sons, New Jersey, 2007)

    Google Scholar 

  3. F. Goos, H. Hänchen, Ein neuer und fundamentaler Versuch zur Totalreflexion. Ann. Physik 436, 333–346 (1947)

    Article  ADS  Google Scholar 

  4. K. Artmann, Berechnung der Seitenversetzung des totalreflektierten Strahles. Ann. Physik 437, 87–102 (1948)

    Article  ADS  Google Scholar 

  5. C. Fragstein, Zur Seitenversetzung des totalreflektierten Lichtstrahles. Ann. Physik 439, 217–278 (1949)

    Article  Google Scholar 

  6. F. Goos, H. Lindberg-Hänchen, Neumessung des Strahlwersetzungseffektes bei Totalreflexion. Ann. Physik 440, 251–252 (1949)

    Article  ADS  Google Scholar 

  7. K. Artmann, Beugung an einer einbackigen Blende endlicher Dicke and der Zusammenhang mit der Theorie der Seitenversetzung des totalref lektierten Strahles. Ann. Physik 442, 209–212 (1950)

    Article  ADS  Google Scholar 

  8. R.H. Renard, Total reflection: a new evaluation of the Goos-Hänchen shift. JOSA 54, 1190–1197 (1964)

    Article  ADS  Google Scholar 

  9. H.K.V. Lotsch, Reflection and refraction of a beam of light at a plane interface. JOSA 58, 551–561 (1968)

    Article  ADS  Google Scholar 

  10. B.R. Horowitz, T. Tamir, Lateral displacement of a light beam at a dielectric interface. JOSA 61, 586–594 (1971)

    Article  ADS  Google Scholar 

  11. J.L. Carter, H. Hora, Total reflection of matter waves: The Goos-Haenchen effect for grazing incidence. JOSA 61, 1640–1645 (1971)

    Article  ADS  Google Scholar 

  12. J.J. Cowan, B. Anicin, Longitudinal and transverse displacements of a bounded microwave beam at total internal reflection. JOSA 67, 1307–1314 (1977)

    Article  ADS  Google Scholar 

  13. F. Bretenaker, A. Le Floch, L. Dutriaux, Direct measurement of the optical goos-Hänchen effect in lasers. Phys. Rev. Lett. 68, 931–933 (1992)

    Article  ADS  Google Scholar 

  14. A. Aiello, J.P. Woerdman, Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts. Opt. Lett. 33, 1437–1439 (2008)

    Article  ADS  Google Scholar 

  15. A. Aiello, Goos-Hänchen and Imbert-Fedorov shifts: a novel perspective. New J. Phys. 14, 013058–12 (2012)

    Article  ADS  Google Scholar 

  16. K.Y. Bliokh, A. Aiello, Goos-Hänchen and Imbert-Fedorov beam shifts: an overview. J. Opt. 15, 014001–16 (2013)

    Article  ADS  Google Scholar 

  17. G. Jayaswal, G. Mistura, M. Merano, Weak measurement of the Goos-Hänchen shift. Opt. Lett. 38, 1232–1234 (2013)

    Article  ADS  Google Scholar 

  18. L.G. Wang, S.Y. Zhu, M.S. Zubairy, Goos-Hänchen shifts of partially coherent light fields. Phys. Rev. Lett. 111, 223901–5 (2013)

    Article  ADS  Google Scholar 

  19. M.P. Araújo, S.A. Carvalho, S. De Leo, The frequency crossover for the Goos-Hänchen shift. J. Mod. Opt. 60, 1772–1780 (2013)

    Article  ADS  Google Scholar 

  20. M.P. Araújo, S. De Leo, G.G. Maia, Closed form expression for the Goos-Hänchen lateral displacement. Phys. Rev. A 93, 023801–023809 (2016)

    Article  ADS  Google Scholar 

  21. O. Santana, S.A. Carvalho, S. De Leo, L.E.E. de Araujo, Weak measurement of the composite Goos-Haenchen shift in the critical region. Opt. Lett. 41, 3884–3887 (2016)

    Article  ADS  Google Scholar 

  22. V. Kompanets, A. Melnikov, S. Chekalin, Goos-Hänchen shift of a mid-infrared femtosecond filament visualized by the laser coloration method. Las. Phys. Lett. 18, 015302–5 (2021)

    Article  ADS  Google Scholar 

  23. Y.M. Antar, W.M. Boerner, Gaussian beam interaction with a planar dielectric interface. Can. J. Phys. 52, 962–972 (1974)

    Article  ADS  Google Scholar 

  24. I.A. White, A.W. Snyder, C. Pask, Directional change of beams undergoing partial reflection. JOSA 67, 703–705 (1977)

    Article  ADS  Google Scholar 

  25. C.C. Chan, T. Tamir, Angular shift of a Gaussian beam reflected near the Brewster angle. Opt. Lett. 10, 378–380 (1985)

    Article  ADS  Google Scholar 

  26. C.C. Chan, T. Tamir, Beam phenomena at and near critical incidence upon a dielectric interface. JOSA A 4, 665–663 (1987)

    Article  ADS  Google Scholar 

  27. D. Müller, D. Tharanga, A.A. Stahlhofen, G. Nimtz, Nonspecular shifts of microwaves in partial reflection. Europhys. Lett. 73, 526–532 (2006)

    Article  ADS  Google Scholar 

  28. A. Aiello, J. P. Woerdman, Theory of angular Goos-Hänchen shift near Brewster incidence. arXiv:0903.3730 [physics.optics] (2009)

  29. A. Aiello, M. Merano, J.P. Woerdman, Brewster cross polarization. Opt. Lett. 34, 1207–1209 (2009)

    Article  ADS  Google Scholar 

  30. M. Merano, A. Aiello, M.P. Exter, J.P. Woerdman, Observing angular deviations in the specular reflection of a light beam. Nat. Photonics 3, 337–340 (2009)

    Article  ADS  Google Scholar 

  31. M. Merano, N. Hermosa, J.P. Woerdman, A. Aiello, How orbital angular momentum affects beam shifts in optical reflection. Phys. Rev. A 82, 023817–5 (2010)

    Article  ADS  Google Scholar 

  32. J.B. Götte, S. Shinohara, M. Hentschel, Are Fresnel filtering and the angular Goos-Hänchen shift the same? J. Opt. 15, 014009–041008 (2013)

    Article  ADS  Google Scholar 

  33. M.P. Araújo, S.A. Carvalho, S. De Leo, Maximal symmetry breaking at critical angle and closed form expression for angular deviations of the Snell law. Phys. Rev. A 90, 033844–033851 (2014)

    Article  ADS  Google Scholar 

  34. M.P. Araújo, S. De Leo, G.G. Maia, Optimizing weak measurements to detect angular deviations. Ann. Physik 529, 1600357–20 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  35. S. De Leo, G.G. Maia, Lateral shifts and angular deviations of Gaussian optical beams reflected by and transmitted through dielectric blocks: a tutorial review. J. Mod. Opt. 66, 2142–2194 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  36. M.P. Araújo, S. De Leo, G.G. Maia, Oscillatory behavior of light in the composite Goos-Hänchen shift. Phys. Rev. A 95, 053836–053839 (2017)

    Article  ADS  Google Scholar 

  37. O. Santana, L.E.E. de Araujo, Direct measurement of the composite Goos-Hänchen shift of an optical beam. Opt. Lett. 43, 4037–4040 (2018)

    Article  ADS  Google Scholar 

  38. O. Santana, L.E.E. de Araujo, Oscillatory trajectory of an optical beam propagating in free space. Opt. Lett. 44, 646–649 (2019)

    Article  ADS  Google Scholar 

  39. S.A. Carvalho, S. De Leo, The use of the stationary phase method as a mathematical tool to determine the path of optical beams. Am. J. Phys. 83, 249–255 (2015)

    Article  ADS  Google Scholar 

  40. S. De Leo, Laser planar trapping. Las. Phys. Lett. 17, 116001–10 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors (S.D.L.) thanks the CNPq (grant 2018/303911) and Fapesp (grant 2019/06382-9) for financial support. The authors are also grateful to A. Alessandrelli, L. Maggio, and L. Solidoro for their scientific comments and suggestions during the preparation of this article and to Profs. G. \(\hbox {Co}^\prime \), L. Girlanda, M. Martino, and M. Mazzeo for their help in consolidating the research BRIT project of international collaboration between the State University of Campinas (Brazil) and the Salento University of Lecce (Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano De Leo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Leo, S., Stefano, A. Angular deviations: from a cubic equation to a universal closed formula to determine the peak position of reflected and (upper) transmitted beams. Eur. Phys. J. Plus 136, 507 (2021). https://doi.org/10.1140/epjp/s13360-021-01509-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01509-6

Navigation