Skip to main content
Log in

Building instructions for a ferromagnetic axion haloscope

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A ferromagnetic haloscope is a rf spin magnetometer used for searching dark matter in the form of axions. A magnetic material is monitored searching for anomalous magnetization oscillations which can be induced by dark matter axions. To properly devise such instrument, one first needs to understand the features of the searched-for signal, namely the effective rf field of dark matter axions \(B_\mathrm{{a}}\) acting on electronic spins. Once the properties of \(B_\mathrm{{a}}\) are defined, the design and test of the apparatus may start. The optimal sample is a narrow linewidth and high spin-density material such as yttrium-iron garnet, coupled to a microwave cavity with almost matched linewidth to collect the signal. The power in the resonator is collected with an antenna and amplified with a Josephson parametric amplifier, a quantum-limited device which, however, adds most of the setup noise. The signal is further amplified with low-noise HEMT and down-converted for storage with an heterodyne receiver. This work describes how to build such apparatus, with all the experimental details, the main issues one might face, and some solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analysed in the present work are available from the corresponding author on reasonable request.]

Notes

  1. The average speed \(v_\mathrm{{a}}\ll c\) also justifies the approximation of Eq. (5), i.e., the use of the non-relativistic limit of Euler–Lagrange equations.

References

  1. N. Crescini, D. Alesini, C. Braggio et al., Axion search with a quantum-limited ferromagnetic haloscope. Phys. Rev. Lett. 124, 171801 (2020)

    Article  ADS  Google Scholar 

  2. F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 6, 110–127 (1933)

    ADS  MATH  Google Scholar 

  3. V.C. Rubin, N. Thonnard, W.K. Ford Jr., Extended rotation curves of high-luminosity spiral galaxies. IV—Systematic dynamical properties, SA through SC. Astrophys. J. 225, L107–L111 (1978)

    Article  ADS  Google Scholar 

  4. V.C. Rubin, W.K. Ford Jr., N. Thonnard, Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc/. Astrophys. J. 238, 471–487 (1980)

    Article  ADS  Google Scholar 

  5. G. Jungman, M. Kamionkowski, K. Griest, Supersymmetric dark matter. Phys. Rep. 267(5), 195–373 (1996)

    Article  ADS  Google Scholar 

  6. G. Arcadi, M. Dutra, P. Ghosh et al., The waning of the wimp? A review of models, searches, and constraints. Eur. Phys. J. C 78(3), 203 (2018)

    Article  ADS  Google Scholar 

  7. V.A. Mitsou, Overview of searches for dark matter at the LHC. J. Phys. Conf. Ser. 651, 012023 (2015)

    Article  Google Scholar 

  8. N. Fornengo, Status and perspectives of indirect and direct dark matter searches. Adv. Space Res. 41(12), 2010–2018 (2008)

    Article  ADS  Google Scholar 

  9. J. Jaeckel, A. Ringwald, The low-energy frontier of particle physics. Annu. Rev. Nucl. Part. Sci. 60(1), 405–437 (2010)

    Article  ADS  Google Scholar 

  10. S. Weinberg, Approximate symmetries and pseudo-goldstone bosons. Phys. Rev. Lett. 29, 1698–1701 (1972)

    Article  ADS  Google Scholar 

  11. R.D. Peccei, The Strong CP Problem and Axions (Springer, Berlin, 2008), pp. 3–17

    Google Scholar 

  12. G. ’t Hooft, Symmetry breaking through Bell–Jackiw anomalies. Phys. Rev. Lett. 37, 8–11 (1976)

    Article  ADS  Google Scholar 

  13. G. ’t Hooft, Computation of the quantum effects due to a four-dimensional pseudoparticle. Phys. Rev. D 14, 3432–3450 (1976)

    Article  ADS  Google Scholar 

  14. P. Di Vecchia, G. Veneziano, R.J. Crewther, E. Witten, Chiral estimate of the electric dipole moment of the neutron in quantum chromodynamics. Phys. Lett. B 91(3–4), 487 (1980)

    Google Scholar 

  15. M. Pospelov, A. Ritz, Electric dipole moments as probes of new physics. Ann. Phys. 318(1), 119–169 (2005). (Special Issue)

    Article  ADS  MATH  Google Scholar 

  16. N.F. Ramsey, Electric-dipole moments of particles. Annu. Rev. Nucl. Part. Sci. 32(1), 211–233 (1982)

    Article  ADS  Google Scholar 

  17. J.H. Smith, E.M. Purcell, N.F. Ramsey, Experimental limit to the electric dipole moment of the neutron. Phys. Rev. 108, 120–122 (1957)

    Article  ADS  Google Scholar 

  18. C.A. Baker et al., An Improved experimental limit on the electric dipole moment of the neutron. Phys. Rev. Lett. 97, 131801 (2006)

    Article  ADS  Google Scholar 

  19. J.M. Pendlebury, S. Afach, N.J. Ayres et al., Revised experimental upper limit on the electric dipole moment of the neutron. Phys. Rev. D 92, 092003 (2015)

    Article  ADS  Google Scholar 

  20. R.D. Peccei, H.R. Quinn, \(\rm CP \) conservation in the presence of pseudoparticles. Phys. Rev. Lett. 38, 1440–1443 (1977)

    Article  ADS  Google Scholar 

  21. F. Wilczek, Problem of strong p and t invariance in the presence of instantons. Phys. Rev. Lett. 40(5), 279 (1978)

    Article  ADS  Google Scholar 

  22. S. Weinberg, A new light boson? Phys. Rev. Lett. 40(4), 223 (1978)

    Article  ADS  Google Scholar 

  23. J.E. Kim, Weak-interaction singlet and strong \(\rm CP\) invariance. Phys. Rev. Lett. 43, 103–107 (1979)

    Article  ADS  Google Scholar 

  24. J.E. Kim, A review on axions and the strong CP problem. AIP Conf. Proc. 1200(1), 83–92 (2010)

    Article  ADS  Google Scholar 

  25. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Can confinement ensure natural CP invariance of strong interactions? Nucl. Phys. B 166(3), 493–506 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  26. M. Tanabashi et al., Review of particle physics. Phys. Rev. D 98(3), 1 (2018)

    Article  MATH  Google Scholar 

  27. A.R. Zhitnitsky, The Weinberg model of the CP violation and t odd correlations in weak decays. Sov. J. Nucl. Phys. 31, 529–534 (1980) [Yad. Fiz.31,1024(1980)]

  28. M. Dine, W. Fischler, M. Srednicki, A simple solution to the strong CP problem with a harmless axion. Phys. Lett. B 104(3), 199–202 (1981)

    Article  ADS  Google Scholar 

  29. M. Dine, W. Fischler, The not-so-harmless axion. Phys. Lett. B 120(1), 137–141 (1983)

    Article  ADS  Google Scholar 

  30. L.F. Abbott, P. Sikivie, A cosmological bound on the invisible axion. Phys. Lett. B 120(1–3), 133–136 (1983)

    Article  ADS  Google Scholar 

  31. J. Preskill, M.B. Wise, F. Wilczek, Cosmology of the invisible axion. Phys. Lett. B 120(1), 127–132 (1983)

    Article  ADS  Google Scholar 

  32. R.L. Davis, Goldstone bosons in string models of galaxy formation. Phys. Rev. D 32, 3172–3177 (1985)

    Article  ADS  Google Scholar 

  33. R.L. Davis, Cosmic axions from cosmic strings. Phys. Lett. B 180(3), 225–230 (1986)

    Article  ADS  Google Scholar 

  34. S. Chang, C. Hagmann, P. Sikivie, Studies of the motion and decay of axion walls bounded by strings. Phys. Rev. D 59, 023505 (1998)

  35. D.H. Lyth, Estimates of the cosmological axion density. Phys. Lett. B 275(3), 279–283 (1992)

    Article  ADS  Google Scholar 

  36. M. Nagasawa, M. Kawasaki, Collapse of axionic domain wall and axion emission. Phys. Rev. D 50, 4821–4826 (1994)

    Article  ADS  Google Scholar 

  37. D.J.E. Marsh, Axion cosmology. Phys. Rep. 643, 1–79 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  38. P. Sikivie, Invisible axion search methods. Rev. Mod. Phys. 93, 015004 (2021)

  39. C. Bonati, M. D’Elia, M. Mariti et al., Recent progress on QCD inputs for axion phenomenology. EPJ Web Conf. 137, 08004 (2017)

    Article  Google Scholar 

  40. F. Burger, E.-M. Ilgenfritz, M. P. Lombardo, M. Müller-Preussker, A. Trunin, Topology (and axion’s properties) from lattice QCD with a dynamical charm. Nucl. Phys. A, 967, 880–883, 2017, in The 26th International Conference on Ultra-relativistic Nucleus-Nucleus Collisions: Quark Matter (2017)

  41. E. Berkowitz, M.I. Buchoff, E. Rinaldi, Lattice QCD input for axion cosmology. Phys. Rev. D 92(3), 034507 (2015)

  42. S. Borsányi, Z. Fodor, J. Guenther et al., Calculation of the axion mass based on high-temperature lattice quantum chromodynamics. Nature 539(7627), 69 (2016)

    Article  ADS  Google Scholar 

  43. P. Petreczky, H.-P. Schadler, S. Sharma, The topological susceptibility in finite temperature QCD and axion cosmology. Phys. Lett. B 762, 498–505 (2016)

    Article  ADS  Google Scholar 

  44. G.G. di Cortona, E. Hardy, J. Pardo Vega, G. Villadoro, The QCD axion, precisely. J. High Energy Phys. 2016(1), 34 (2016)

  45. G.G. Raffelt, Stars as Laboratories for Fundamental Physics: The Astrophysics of Neutrinos, Axions, and Other Weakly Interacting Particles (University of Chicago Press, Chicago, 1996)

    Google Scholar 

  46. G.G. Raffelt, Astrophysical methods to constrain axions and other novel particle phenomena. Phys. Rep. 198(1), 1–113 (1990)

    Article  ADS  Google Scholar 

  47. M.S. Turner, Windows on the axion. Phys. Rep. 197(2), 67–97 (1990)

    Article  ADS  Google Scholar 

  48. P. Gondolo, G.G. Raffelt, Solar neutrino limit on axions and kev-mass bosons. Phys. Rev. D 79, 107301 (2009)

  49. H. Schlattl, A. Weiss, G. Raffelt, Helioseismological constraint on solar axion emission. Astropart. Phys. 10(4), 353–359 (1999)

  50. J. Redondo, Solar axion flux from the axion-electron coupling. J. Cosmol. Astropart. Phys. 2013(12), 008 (2013)

  51. N. Viaux, M. Catelan, P.B. Stetson et al., Neutrino and axion bounds from the globular cluster M5 (NGC 5904). Phys. Rev. Lett. 111, 231301 (2013)

  52. G.G. Raffelt, Axion constraints from white dwarf cooling times. Phys. Lett. B 166(4), 402–406 (1986)

    Article  ADS  Google Scholar 

  53. A.H. Córsico, A.D. Romero, L.G. Althaus et al., An asteroseismic constraint on the mass of the axion from the period drift of the pulsating DA white dwarf star l19–2. J. Cosmol. Astropart. Phys. 2016(07), 036 (2016)

    Article  Google Scholar 

  54. J. Engel, D. Seckel, A.C. Hayes, Emission and detectability of hadronic axions from SN 1987a. Phys. Rev. Lett. 65, 960–963 (1990)

    Article  ADS  Google Scholar 

  55. L.B. Leinson, Axion mass limit from observations of the neutron star in Cassiopeia A. J. Cosmol. Astropart. Phys. 2014(08), 031–031 (2014)

    Article  Google Scholar 

  56. J. Keller, A. Sedrakian, Axions from cooling compact stars: pair-breaking processes. Nucl. Phys. A 897, 62–69 (2013)

    Article  ADS  Google Scholar 

  57. A. Sedrakian, Axion cooling of neutron stars. Phys. Rev. D 93, 065044 (2016)

  58. P. Fox, A. Pierce, S. Thomas, Probing a QCD string axion with precision cosmological measurements. arXiv:0409059 [hep-th] (2004)

  59. K.J. Bae, J.-H. Huh, J.E. Kim, Updating the axion cold dark matter energy density. J. Cosmol. Astropart. Phys. 2008(09), 005 (2008)

    Article  Google Scholar 

  60. O. Wantz, E.P.S. Shellard. Axion cosmology revisited. Phys. Rev. D, 82, 123508 (2010)

  61. M. Tegmark, D.J. Eisenstein, M.A. Strauss et al., Cosmological constraints from the SDSS luminous red galaxies. Phys. Rev. D 74, 123507 (2006)

  62. M. Beltrán, J. García-Bellido, J. Lesgourgues, Isocurvature bounds on axions revisited. Phys. Rev. D 75, 103507 (2007)

  63. M.P. Hertzberg, M. Tegmark, F. Wilczek, Axion cosmology and the energy scale of inflation. Phys. Rev. D 78, 083507 (2008)

  64. J. Hamann, S. Hannestad, G.G. Raffelt, Y.Y.Y. Wong, Isocurvature forecast in the anthropic axion window. J. Cosmol. Astropart. Phys. 2009(06), 022 (2009)

    Article  Google Scholar 

  65. Planck Collaboration, P.A.R. Ade, N. Aghanim et al., Planck 2013 results. XVI. Cosmological parameters. A&A 571, A16 (2014)

  66. Planck Collaboration, P.A.R. Ade, N. Aghanim et al., Planck 2015 results—XIII. Cosmological parameters. A&A 594, A13 (2016)

  67. P. Arias, D. Cadamuro, M. Goodsell et al., WISPy cold dark matter. J. Cosmol. Astropart. Phys. 2012(06), 013 (2012)

    Article  ADS  Google Scholar 

  68. I.G. Irastorza, J. Redondo, New experimental approaches in the search for axion-like particles. Progr. Part. Nucl. Phys. 102, 89–159 (2018)

    Article  ADS  Google Scholar 

  69. P. Sikivie, Experimental tests of the invisible axion. Phys. Rev. Lett. 51, 1415–1417 (1983)

    Article  ADS  Google Scholar 

  70. S.J. Asztalos, R.F. Bradley, L. Duffy et al., Improved RF cavity search for halo axions. Phys. Rev. D 69, 011101 (2004)

  71. L.D. Duffy, P. Sikivie, D.B. Tanner et al., High resolution search for dark-matter axions. Phys. Rev. D 74, 012006 (2006)

  72. S.J. Asztalos, G. Carosi, C. Hagmann et al., Squid-based microwave cavity search for dark-matter axions. Phys. Rev. Lett. 104, 041301 (2010)

  73. N. Du, N. Force, R. Khatiwada et al., Search for invisible axion dark matter with the axion dark matter experiment. Phys. Rev. Lett. 120, 151301 (2018)

  74. C. Bartram, T. Braine, R. Cervantes et al., Axion dark matter experiment: run 1b analysis details. Phys. Rev. D 103, 032002 (2021)

  75. B.M. Brubaker, L. Zhong, Y.V. Gurevich et al., First results from a microwave cavity axion search at \(24\,{\mu }\rm eV\). Phys. Rev. Lett. 118, 061302 (2017)

  76. K.M. Backes, D.A. Palken, S. Al Kenany et al., A quantum enhanced search for dark matter axions. Nature 590(7845), 238–242 (2021)

  77. S. DePanfilis, A.C. Melissinos, B.E. Moskowitz et al. Limits on the abundance and coupling of cosmic axions at \(4.5\le m_a \le 5.0\,\mu \)ev. Phys. Rev. Lett. 59, 839–842 (1987)

  78. B.T. McAllister, G. Flower, E.N. Ivanov et al., The organ experiment: an axion haloscope above 15 GHZ. Phys. Dark Univ. 18, 67–72 (2017)

    Article  Google Scholar 

  79. A. Álvarez Melcón, S. Arguedas Cuendis, J. Baier et al., First results of the cast-rades haloscope search for axions at 34.67 \(\mu \)ev. J. High Energy Phys. 2021(10), 75 (2021)

  80. O. Kwon, D. Lee, W. Chung et al., First results from an axion haloscope at capp around \(10.7 \mu \rm eV\). Phys. Rev. Lett. 126, 191802 (2021)

  81. J. Jeong, S.W. Youn, S. Bae et al., Search for invisible axion dark matter with a multiple-cell haloscope. Phys. Rev. Lett. 125, 221302 (2020)

  82. S. Lee, S. Ahn, J. Choi, B.R. Ko, Y.K. Semertzidis, Axion dark matter search around \(6.7 \mu \rm eV\). Phys. Rev. Lett. 124, 101802 (2020)

  83. Petrakou, Eleni and for CAPP/IBS. Haloscope searches for dark matter axions at the center for axion and precision physics research. EPJ Web Conf. 164, 01012 (2017)

  84. A. Caldwell, G. Dvali, B. Majorovits et al., Dielectric haloscopes: a new way to detect axion dark matter. Phys. Rev. Lett. 118(9), 091801 (2017)

  85. D. Budker, P.W. Graham, M. Ledbetter, S. Rajendran, A.O. Sushkov, Proposal for a cosmic axion spin precession experiment (casper). Phys. Rev. X 4, 021030 (2014)

  86. A. Garcon, D. Aybas, J.W. Blanchard et al., The cosmic axion spin precession experiment (CASPEr): a dark-matter search with nuclear magnetic resonance. Quantum Sci. Technol. 3(1), 014008 (2017)

  87. G. Ruoso, A. Lombardi, A. Ortolan et al., The quax proposal: a search of galactic axion with magnetic materials. J. Phys. Conf. Ser. 718(4), 042051 (2016)

  88. R. Barbieri, C. Braggio, G. Carugno et al., Searching for galactic axions through magnetized media: the Quax proposal. Phys. Dark Univ. 15, 135–141 (2017)

    Article  Google Scholar 

  89. J.L. Ouellet, C.P. Salemi, J.W. Foster et al., First results from abracadabra-10 cm: a search for sub-\(\mu \rm eV\) axion dark matter. Phys. Rev. Lett. 122, 121802 (2019)

  90. F. Caspers, Y. Semertzidis. Ferrimagnetic resonance, magnetostatic waves and open resonators for axion detection, in Cosmic Axions. Proceedings, Workshop, Upton, USA, April 13–14, 1989, pp. 0173–183 (1989)

  91. S. Afach, B.C. Buchler, D. Budker et al., Search for topological defect dark matter with a global network of optical magnetometers. Nat. Phys. 17(12), 1396–1401 (2021)

    Article  Google Scholar 

  92. R. Barbieri, M. Cerdonio, G. Fiorentini, S. Vitale, Axion to magnon conversion. A scheme for the detection of galactic axions. Phys. Lett. B 226(3), 357–360 (1989)

  93. A.I. Kakhidze, I.V. Kolokolov, Antiferromagnetic axion detector. Zh. Eksp. Teor. Fiz 99, 1077–1081 (1991)

    ADS  Google Scholar 

  94. P.V. Vorobyov, A.N. Kirpotin, M.E. Rovkin, A.P. Boldyrev, Ferromagnetic detectors of axions in rf (s-x) band. arXiv:9506371 [hep-ph] (1995)

  95. L. Krauss, J. Moody, F. Wilczek, D.E. Morris, Calculations for cosmic axion detection. Phys. Rev. Lett. 55, 1797–1800 (1985)

    Article  ADS  Google Scholar 

  96. L.D. Landau, E.M. Lifšic, E.M. Lifshitz et al., Statistical Physics: Theory of the Condensed State (Elsevier Science, Course of Theoretical Physics, 1980)

  97. M.S. Turner, Periodic signatures for the detection of cosmic axions. Phys. Rev. D 42, 3572–3575 (1990)

    Article  ADS  Google Scholar 

  98. M.S. Turner, F. Wilczek, Positron line radiation as a signature of particle dark matter in the halo. Phys. Rev. D 42, 1001–1007 (1990)

    Article  ADS  Google Scholar 

  99. E.W. Lentz, T.R. Quinn, L.J. Rosenberg, M.J. Tremmel, A new signal model for axion cavity searches from n-body simulations. Astrophys. J. 845(2), 121 (2017)

  100. N. Bloembergen, R.V. Pound, Radiation damping in magnetic resonance experiments. Phys. Rev. 95, 8–12 (1954)

    Article  ADS  Google Scholar 

  101. C. Kittel, Interpretation of anomalous larmor frequencies in ferromagnetic resonance experiment. Phys. Rev. 71, 270–271 (1947)

    Article  ADS  Google Scholar 

  102. M. Sparks, C. Kittel, Ferromagnetic relaxation mechanism for \(m_z\) in yttrium iron garnet. Phys. Rev. Lett. 4, 232–234 (1960)

    Article  ADS  Google Scholar 

  103. M. Tavis, F.W. Cummings, Exact solution for an \(n\)-molecule-radiation-field Hamiltonian. Phys. Rev. 170, 379–384 (1968)

    Article  ADS  Google Scholar 

  104. X. Zhang, C.-L. Zou, L. Jiang, H.X. Tang, Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett. 113, 156401 (2014)

  105. Y. Tabuchi, S. Ishino, T. Ishikawa et al., Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett. 113, 083603 (2014)

  106. N. Crescini, C. Braggio, G. Carugno, A. Ortolan, G. Ruoso, Coherent coupling between multiple ferrimagnetic spheres and a microwave cavity at millikelvin temperatures. Phys. Rev. B 104, 064426 (2021)

  107. N. Crescini, D. Alesini, C. Braggio et al., Operation of a ferromagnetic axion haloscope at \(m_a=58\,\mu \rm eV\). Eur. Phys. J. C 78(9), 703 (2018)

    Article  ADS  Google Scholar 

  108. N. Crescini. Towards the development of the ferromagnetic axion haloscope. Ph.D. Thesis, Padova University (2019)

  109. B. Yurke, L.R. Corruccini, P.G. Kaminsky et al., Observation of parametric amplification and deamplification in a Josephson parametric amplifier. Phys. Rev. A 39, 2519–2533 (1989)

    Article  ADS  Google Scholar 

  110. M. Castellanos Beltran, K.W. Lehnert, Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator. Appl. Phys. Lett. 91, 083509–083509 (2007)

  111. M. Sandberg, C.M. Wilson, F. Persson et al., Tuning the field in a microwave resonator faster than the photon lifetime. Appl. Phys. Lett. 92(20), 203501 (2008)

  112. E.A. Tholén, A. Ergül, E.M. Doherty et al., Nonlinearities and parametric amplification in superconducting coplanar waveguide resonators. Appl. Phys. Lett. 90(25), 253509 (2007)

  113. T. Yamamoto, K. Inomata, M. Watanabe et al., Flux-driven josephson parametric amplifier. Appl. Phys. Lett. 93(4), 042510 (2008)

  114. B. Abdo, O. Suchoi, E. Segev et al., Intermodulation and parametric amplification in a superconducting stripline resonator integrated with a dc-SQUID. EPL (Europhys. Lett.) 85(6), 68001 (2009)

  115. J.Y. Mutus, T.C. White, R. Barends et al., Strong environmental coupling in a Josephson parametric amplifier. Appl. Phys. Lett. 104(26), 263513 (2014)

  116. T. Mimura, The early history of the high electron mobility transistor (HEMT). IEEE Trans. Microwave Theory Tech. 50(3), 780–782 (2002)

    Article  ADS  Google Scholar 

  117. A. Roy, M. Devoret, Introduction to parametric amplification of quantum signals with Josephson circuits. C. R. Phys. 17(7), 740–755 (2016)

    Article  ADS  Google Scholar 

  118. N. Bergeal, R. Vijay, V.E. Manucharyan et al., Analog information processing at the quantum limit with a Josephson ring modulator. Nat. Phys. 6, 296 (2010)

    Article  Google Scholar 

  119. N. Crescini, C. Braggio, G. Carugno et al., Magnon-driven dynamics of a hybrid system excited with ultrafast optical pulses. Commun. Phys. 3(1), 164 (2020)

    Article  Google Scholar 

  120. Ciaran O’HARE. Cajohare/axionlimits: Axionlimits (2020)

  121. R. Lescanne, S. Deléglise, E. Albertinale et al., Irreversible qubit-photon coupling for the detection of itinerant microwave photons. Phys. Rev. X 10, 021038 (2020)

  122. E. Albertinale, L. Balembois, E. Billaud et al., Detecting spins by their fluorescence with a microwave photon counter. Nature 600(7889), 434–438 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

N.C. is thankful to INFN and the Laboratori Nazionali di Legnaro for hosting and encouraging the experiment. The help and support of Giovanni Carugno and Giuseppe Ruoso are deeply acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolò Crescini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crescini, N. Building instructions for a ferromagnetic axion haloscope. Eur. Phys. J. Plus 137, 338 (2022). https://doi.org/10.1140/epjp/s13360-022-02533-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02533-w

Navigation