Skip to main content
Log in

Quarkonium propagation in the quark–gluon plasma

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In relativistic heavy ion collisions at RHIC and the LHC, a quark–gluon plasma (QGP) is created for a short duration of about 10 fm/c. Quarkonia (bound states of \(c\bar{c}\) and \(b\bar{b}\)) are sensitive probes of this phase on length scales comparable to the size of the bound states which are less than 1 fm. Observations of quarkonia in these collisions provide us with a lot of information about how the presence of a QGP affects various quarkonium states. This has motivated the development of the theory of heavy quarks and their bound states in a thermal medium, and its application to the phenomenology of quarkonia in heavy ion collisions. We review some of these developments here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Within the ambit of final state interactions there is another effect that can be included. The color octet state \(Q\bar{Q}\) undergoes energy loss before giving rise to the initial mesonic state. This effect was included in Ref. [61].

References

  1. P. Romatschke, Int. J. Mod. Phys. E 19, 1–53 (2010). https://doi.org/10.1142/S0218301310014613. arXiv:0902.3663 [hep-ph]

    Article  ADS  Google Scholar 

  2. D.A. Teaney, https://doi.org/10.1142/9789814293297_0004. arXiv:0905.2433 [nucl-th]

  3. T. Hirano, Prog. Theor. Phys. Suppl. 195, 1–18 (2012). https://doi.org/10.1143/PTPS.195.1

    Article  ADS  Google Scholar 

  4. H. Song, Pramana 84, 703–715 (2015). https://doi.org/10.1007/s12043-015-0971-2. arXiv:1401.0079 [nucl-th]

    Article  ADS  Google Scholar 

  5. C. Gale, S. Jeon, B. Schenke, Int. J. Mod. Phys. A 28, 1340011 (2013). https://doi.org/10.1142/S0217751X13400113. arXiv:1301.5893 [nucl-th]

    Article  ADS  Google Scholar 

  6. U. Heinz, R. Snellings, Ann. Rev. Nucl. Part. Sci., 2013, pp. 123–151. https://doi.org/10.1146/annurev-nucl-102212-170540. arXiv:1301.2826 [nucl-th]

    Book  Google Scholar 

  7. C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass, U. Heinz, Comput. Phys. Commun. 199, 61 (2016). https://doi.org/10.1016/j.cpc.2015.08.039. arXiv:1409.8164 [nucl-th]

    Article  ADS  MathSciNet  Google Scholar 

  8. S. Jeon, U. Heinz, Int. J. Mod. Phys. E 24(10), 1530010 (2015). https://doi.org/10.1142/S0218301315300106. arXiv:1503.03931 [hep-ph]

    Article  ADS  Google Scholar 

  9. A. Jaiswal, V. Roy, Adv. High Energy Phys. 2016, 9623034 (2016). https://doi.org/10.1155/2016/9623034. arXiv:1605.08694 [nucl-th]

    Article  Google Scholar 

  10. P. Romatschke, U. Romatschke, Phys. Rev. Lett. 99, 172301 (2007). https://doi.org/10.1103/PhysRevLett.99.172301. arXiv:0706.1522 [nucl-th]

    Article  ADS  Google Scholar 

  11. U.W. Heinz, J.S. Moreland, H. Song, Phys. Rev. C 80, 061901 (2009). https://doi.org/10.1103/PhysRevC.80.061901. arXiv:0908.2617 [nucl-th]

    Article  ADS  Google Scholar 

  12. B. Schenke, S. Jeon, C. Gale, Phys. Rev. C 82, 014903 (2010). https://doi.org/10.1103/PhysRevC.82.014903. arXiv:1004.1408 [hep-ph]

    Article  ADS  Google Scholar 

  13. U.A. Wiedemann, Nucl. Phys. B 582, 409–450 (2000). https://doi.org/10.1016/S0550-3213(00)00286-8. arXiv:hep-ph/0003021

    Article  ADS  Google Scholar 

  14. S. Caron-Huot, Phys. Rev. D 79, 065039 (2009). https://doi.org/10.1103/PhysRevD.79.065039. arXiv:0811.1603 [hep-ph]

    Article  ADS  Google Scholar 

  15. A. Majumder, Phys. Rev. C 87, 034905 (2013). https://doi.org/10.1103/PhysRevC.87.034905. arXiv:1202.5295 [nucl-th]

    Article  ADS  Google Scholar 

  16. E. Eichten, S. Godfrey, H. Mahlke, J.L. Rosner, Rev. Mod. Phys. 80, 1161 (2008). https://doi.org/10.1103/RevModPhys.80.1161. arXiv:hep-ph/0701208

    Article  ADS  Google Scholar 

  17. G.T. Bodwin, E. Braaten, G.P. Lepage, Phys. Rev. D 51, 1125 (1995). (Erratum-ibid. D 55, 5853 (1997))

    Article  ADS  Google Scholar 

  18. C. Quigg, J.L. Rosner, Phys. Rep. 56, 167 (1979). https://doi.org/10.1016/0370-1573(79)90095-4

    Article  ADS  MathSciNet  Google Scholar 

  19. E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane, T.M. Yan, Phys. Rev. D 21, 203 (1980). https://doi.org/10.1103/PhysRevD.21.203

    Article  ADS  Google Scholar 

  20. S.W. Otto, J.D. Stack, Phys. Rev. Lett. 52, 2328 (1984). https://doi.org/10.1103/PhysRevLett.52.2328

    Article  ADS  Google Scholar 

  21. N. Brambilla, A. Pineda, J. Soto, A. Vairo, Nucl. Phys. B 566, 275 (2000). https://doi.org/10.1016/S0550-3213(99)00693-8. arXiv:hep-ph/9907240

    Article  ADS  Google Scholar 

  22. N. Brambilla, A. Pineda, J. Soto, A. Vairo, Rev. Mod. Phys. 77, 1423 (2005). https://doi.org/10.1103/RevModPhys.77.1423. arXiv:hep-ph/0410047

    Article  ADS  Google Scholar 

  23. N. Brambilla, A. Vairo, X. Garcia Tormo, I.J. Soto, Phys. Rev. D 80, 034016 (2009). https://doi.org/10.1103/PhysRevD.80.034016. arXiv:0906.1390 [hep-ph]

    Article  ADS  Google Scholar 

  24. N. Brambilla, A. Pineda, J. Soto, A. Vairo, Phys. Lett. B 470, 215 (1999). https://doi.org/10.1016/S0370-2693(99)01301-5. arXiv:hep-ph/9910238

    Article  ADS  Google Scholar 

  25. B.A. Kniehl, A.A. Penin, V.A. Smirnov, M. Steinhauser, Nucl. Phys. B 635, 357–383 (2002). https://doi.org/10.1016/S0550-3213(02)00403-0. arXiv:hep-ph/0203166

    Article  ADS  Google Scholar 

  26. M.B. Voloshin, Prog. Part. Nucl. Phys. 61, 455–511 (2008). https://doi.org/10.1016/j.ppnp.2008.02.001. arXiv:0711.4556 [hep-ph]

    Article  ADS  Google Scholar 

  27. N. Brambilla et al., Eur. Phys. J. C 71, 1534 (2011). https://doi.org/10.1140/epjc/s10052-010-1534-9. arXiv:1010.5827 [hep-ph]

    Article  ADS  Google Scholar 

  28. C. Patrignani, T.K. Pedlar, J.L. Rosner, Ann. Rev. Nucl. Part. Sci. 63, 21–44 (2013). https://doi.org/10.1146/annurev-nucl-102212-170609. arXiv:1212.6552 [hep-ex]

    Article  ADS  Google Scholar 

  29. W.W. Repko, M.D. Santia, S.F. Radford, Nucl. Phys. A 924, 65–73 (2014). https://doi.org/10.1016/j.nuclphysa.2014.01.005. arXiv:1211.6373 [hep-ph]

    Article  ADS  Google Scholar 

  30. S.F. Radford, W.W. Repko, Phys. Rev. D 75, 074031 (2007). https://doi.org/10.1103/PhysRevD.75.074031. arXiv:hep-ph/0701117

    Article  ADS  Google Scholar 

  31. N. Brambilla, H.S. Chung, D. Müller, A. Vairo, JHEP 04, 095 (2020). https://doi.org/10.1007/JHEP04(2020)095. arXiv:2002.07462 [hep-ph]

    Article  ADS  Google Scholar 

  32. O. Kaczmarek, F. Karsch, P. Petreczky, F. Zantow, Phys. Lett. B 543, 41 (2002). https://doi.org/10.1016/S0370-2693(02)02415-2. arXiv:hep-lat/0207002

    Article  ADS  Google Scholar 

  33. S. Digal, S. Fortunato, P. Petreczky, Phys. Rev. D 68, 034008 (2003). https://doi.org/10.1103/PhysRevD.68.034008. arXiv:hep-lat/0304017

    Article  ADS  Google Scholar 

  34. O. Kaczmarek, S. Ejiri, F. Karsch, E. Laermann, F. Zantow, Prog. Theor. Phys. Suppl. 153, 287 (2004). https://doi.org/10.1143/PTPS.153.287. arXiv:hepy-lat/0312015

    Article  ADS  Google Scholar 

  35. O. Kaczmarek, F. Zantow, Phys. Rev. D 71, 114510 (2005). https://doi.org/10.1103/PhysRevD.71.114510. arXiv:hep-lat/0503017

    Article  ADS  Google Scholar 

  36. M. Doring, K. Huebner, O. Kaczmarek, F. Karsch, Phys. Rev. D 75, 054504 (2007). https://doi.org/10.1103/PhysRevD.75.054504. arXiv:hep-lat/0702009

    Article  ADS  Google Scholar 

  37. M.E. Peskin, Nucl. Phys. B 156, 365 (1979)

    Article  ADS  Google Scholar 

  38. G. Bhanot, M.E. Peskin, Nucl. Phys. B 156, 391 (1979). https://doi.org/10.1016/0550-3213(79)90200-1

    Article  ADS  Google Scholar 

  39. T. Matsui, H. Satz, Phys. Lett. B 178, 416–422 (1986)

    Article  ADS  Google Scholar 

  40. F. Karsch, M.T. Mehr, H. Satz, Z. Phys. C 37, 617 (1988). https://doi.org/10.1007/BF01549722

    Article  ADS  Google Scholar 

  41. F. Karsch, H. Satz, Zeitschrift für Physik C Part. Fields 51(2), 209 (1991)

    Article  Google Scholar 

  42. S. Digal, P. Petreczky, H. Satz, Phys. Rev. D 64, 094015 (2001). https://doi.org/10.1103/PhysRevD.64.094015. arXiv:hep-ph/0106017

    Article  ADS  Google Scholar 

  43. R. Rapp, D. Blaschke, P. Crochet, Prog. Part. Nucl. Phys. 65, 209 (2010). https://doi.org/10.1016/j.ppnp.2010.07.002. arXiv:0807.2470 [hep-ph]

    Article  ADS  Google Scholar 

  44. R. Rapp, H. van Hees, arXiv:0903.1096 [hep-ph]

  45. Z. Conesa del Valle et al., Nucl. Phys. Proc. Suppl. 214, 3 (2011)

    Article  ADS  Google Scholar 

  46. M. Laine, O. Philipsen, P. Romatschke, M. Tassler, JHEP 0703, 054 (2007). arXiv:hep-ph/0611300 [hep-ph]

  47. Y. Burnier, O. Kaczmarek, A. Rothkopf, JHEP 12, 101 (2015). https://doi.org/10.1007/JHEP12(2015)101. arXiv:1509.07366 [hep-ph]

    Article  ADS  Google Scholar 

  48. S. Datta, F. Karsch, P. Petreczky, I. Wetzorke, Phys. Rev. D 69, 094507 (2004). https://doi.org/10.1103/PhysRevD.69.094507. arXiv:hep-lat/0312037

    Article  ADS  Google Scholar 

  49. T. Umeda, K. Nomura, H. Matsufuru, Eur. Phys. J. C 39S1, 9–26 (2005). https://doi.org/10.1140/epjcd/s2004-01-002-1. arXiv:hep-lat/0211003

    Article  ADS  Google Scholar 

  50. M. Asakawa, T. Hatsuda, Phys. Rev. Lett. 92, 012001 (2004). https://doi.org/10.1103/PhysRevLett.92.012001. arXiv:hep-lat/0308034

    Article  ADS  Google Scholar 

  51. A. Jakovac, P. Petreczky, K. Petrov, A. Velytsky, Phys. Rev. D 75, 014506 (2007). https://doi.org/10.1103/PhysRevD.75.014506. arXiv:hep-lat/0611017

    Article  ADS  Google Scholar 

  52. A. Mocsy, P. Petreczky, Phys. Rev. D 77, 014501 (2008). arXiv:0705.2559 [hep-ph]

  53. A. Mocsy, P. Petreczky, Phys. Rev. Lett. 99, 211602 (2007). arXiv:0706.2183 [hep-ph]

  54. P. Petreczky, C. Miao, A. Mocsy, Nucl. Phys. A 855, 125–132 (2011). https://doi.org/10.1016/j.nuclphysa.2011.02.028. arXiv:1012.4433 [hep-ph]

    Article  ADS  Google Scholar 

  55. A. Bazavov, P. Petreczky, A. Velytsky, https://doi.org/10.1142/9789814293297_0002. arXiv:0904.1748 [hep-ph]

  56. G. Aarts, C. Allton, S. Kim, M.P. Lombardo, M.B. Oktay, S.M. Ryan, D.K. Sinclair, J.I. Skullerud, JHEP 1111, 103 (2011). https://doi.org/10.1007/JHEP11(2011)103. arXiv:1109.4496 [hep-lat]

    Article  ADS  Google Scholar 

  57. F. Karsch, E. Laermann, S. Mukherjee, P. Petreczky, Phys. Rev. D 85, 114501 (2012). https://doi.org/10.1103/PhysRevD.85.114501. arXiv:1203.3770 [hep-lat]

    Article  ADS  Google Scholar 

  58. P. Petreczky, J. Phys. G 39, 093002 (2012). https://doi.org/10.1088/0954-3899/39/9/093002. arXiv:1203.5320 [hep-lat]

    Article  ADS  Google Scholar 

  59. S. Datta, Pramana 84(5), 881 (2015). https://doi.org/10.1007/s12043-015-0975-y. arXiv:1403.8151 [nucl-th]

    Article  ADS  Google Scholar 

  60. A. Rothkopf, Phys. Rept. 858, 1–117 (2020). arXiv:1912.02253 [hep-ph]

  61. S. Aronson, E. Borras, B. Odegard, R. Sharma, I. Vitev, Phys. Lett. B 778, 384 (2018). https://doi.org/10.1016/j.physletb.2018.01.038. arXiv:1709.02372 [hep-ph]

    Article  ADS  Google Scholar 

  62. J. Hoelck, F. Nendzig, G. Wolschin, Phys. Rev. C 95(2), 024905 (2017). https://doi.org/10.1103/PhysRevC.95.024905. arXiv:1602.00019 [hep-ph]

    Article  ADS  Google Scholar 

  63. M.A. Escobedo, J. Soto, M. Mannarelli, Phys. Rev. D 84, 016008 (2011) and references therein. arXiv:1105.1249 [hep-ph]

  64. J. Boyd, T. Cook, A. Islam, M. Strickland, Phys. Rev. D 100(7), 076019 (2019). https://doi.org/10.1103/PhysRevD.100.076019. arXiv:1905.05676 [hep-ph]

    Article  ADS  Google Scholar 

  65. Y. Akamatsu, A. Rothkopf, Phys. Rev. D 85, 105011 (2012). https://doi.org/10.1103/PhysRevD.85.105011. arXiv:1110.1203 [hep-ph]

    Article  ADS  Google Scholar 

  66. Y. Akamatsu, Phys. Rev. D 87(4), 045016 (2013). https://doi.org/10.1103/PhysRevD.87.045016. arXiv:1209.5068 [hep-ph]

    Article  ADS  Google Scholar 

  67. Y. Akamatsu, Phys. Rev. D 91(5), 56002 (2015). https://doi.org/10.1103/PhysRevD.91.056002. arXiv:1403.5783 [hep-ph]

    Article  ADS  Google Scholar 

  68. Y. Akamatsu, Phys. Rev. C 92(4), 044911 (2015). https://doi.org/10.1103/PhysRevC.92.044911. arXiv:1503.08110 [nucl-th]

    Article  ADS  Google Scholar 

  69. S. Kajimoto, Y. Akamatsu, M. Asakawa, A. Rothkopf, arXiv:1705.03365 [nucl-th]

  70. Y. Akamatsu, M. Asakawa, S. Kajimoto, A. Rothkopf, JHEP 1807, 029 (2018). https://doi.org/10.1007/JHEP07(2018)029. arXiv:1805.00167 [nucl-th]

    Article  ADS  Google Scholar 

  71. T. Miura, Y. Akamatsu, M. Asakawa, A. Rothkopf, arXiv:1908.06293 [nucl-th]

  72. N. Brambilla, M.A. Escobedo, J. Soto, A. Vairo, Phys. Rev. D 96(3), 034021 (2017). https://doi.org/10.1103/PhysRevD.96.034021. arXiv:1612.07248 [hep-ph]

    Article  ADS  Google Scholar 

  73. N. Brambilla, M.A. Escobedo, J. Soto, A. Vairo, Phys. Rev. D 97(7), 074009 (2018). https://doi.org/10.1103/PhysRevD.97.074009. arXiv:1711.04515 [hep-ph]

    Article  ADS  Google Scholar 

  74. N. Brambilla, M.A. Escobedo, A. Vairo, P. Vander Griend, Phys. Rev. D 100(5), 054025 (2019). https://doi.org/10.1103/PhysRevD.100.054025. arXiv:1903.08063 [hep-ph]

    Article  ADS  Google Scholar 

  75. N. Brambilla et al., TUMQCD Collaboration, arXiv:1912.00689 [hep-lat]

  76. J.P. Blaizot, D. De Boni, P. Faccioli, G. Garberoglio, Nucl. Phys. A 946, 49 (2016). https://doi.org/10.1016/j.nuclphysa.2015.10.011. arXiv:1503.03857 [nucl-th]

    Article  ADS  Google Scholar 

  77. J.P. Blaizot, M.A. Escobedo, JHEP 1806, 034 (2018). https://doi.org/10.1007/JHEP06(2018)034. arXiv:1711.10812 [hep-ph]

    Article  ADS  Google Scholar 

  78. J.P. Blaizot, M.A. Escobedo, Phys. Rev. D 98(7), 074007 (2018). https://doi.org/10.1103/PhysRevD.98.074007. arXiv:1803.07996 [hep-ph]

    Article  ADS  Google Scholar 

  79. X. Yao, B. Müller, Phys. Rev. C 97(1), 014908 (2018). Erratum: [Phys. Rev. C 97(4), 049903 (2018)]. https://doi.org/10.1103/PhysRevC.97.049903. https://doi.org/10.1103/PhysRevC.97.014908. arXiv:1709.03529 [hep-ph]

  80. X. Yao, B. Müller, Phys. Rev. D 100(1), 014008 (2019). https://doi.org/10.1103/PhysRevD.100.014008. arXiv:1811.09644 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  81. X. Yao, T. Mehen, Phys. Rev. D 99(9), 096028 (2019). https://doi.org/10.1103/PhysRevD.99.096028. arXiv:1811.07027 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  82. X. Yao, B. Müller, Phys. Rev. D 97(7), 074003 (2018). https://doi.org/10.1103/PhysRevD.97.074003. arXiv:1801.02652 [hep-ph]

    Article  ADS  Google Scholar 

  83. X. Yao, T. Mehen, arXiv:2009.02408 [hep-ph]

  84. A. Islam, M. Strickland, arXiv:2010.05457 [hep-ph]

  85. R. Sharma, A. Tiwari, Phys. Rev. D 101(7), 074004 (2020). https://doi.org/10.1103/PhysRevD.101.074004. arXiv:1912.07036 [hep-ph]

    Article  ADS  Google Scholar 

  86. A. Andronic et al., Eur. Phys. J. C 76(3), 107 (2016). https://doi.org/10.1140/epjc/s10052-015-3819-5. arXiv:1506.03981 [nucl-ex]

    Article  ADS  Google Scholar 

  87. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, U.A. Wiedemann, [arXiv:1101.0618]

  88. A. Mocsy, P. Petreczky, M. Strickland, Int. J. Mod. Phys. A 28, 1340012 (2013). https://doi.org/10.1142/S0217751X13400125. arXiv:1302.2180 [hep-ph]

    Article  ADS  Google Scholar 

  89. G. Aarts et al., Eur. Phys. J. A 53(5), 93 (2017). https://doi.org/10.1140/epja/i2017-12282-9. arXiv:1612.08032 [nucl-th]

    Article  ADS  MathSciNet  Google Scholar 

  90. O. Philipsen, Phys. Lett. B 535, 138–144 (2002). https://doi.org/10.1016/S0370-2693(02)01777-X. arXiv:hep-lat/0203018

    Article  ADS  Google Scholar 

  91. L.D. McLerran, B. Svetitsky, Phys. Rev. D 24, 450 (1981). https://doi.org/10.1103/PhysRevD.24.450

    Article  ADS  Google Scholar 

  92. Y. Burnier, M. Laine, M. Vepsalainen, JHEP 01, 043 (2008). https://doi.org/10.1088/1126-6708/2008/01/043. arXiv:0711.1743 [hep-ph]

    Article  ADS  Google Scholar 

  93. A. Beraudo, J.-P. Blaizot, C. Ratti, Nucl. Phys. A 806, 312 (2008). https://doi.org/10.1016/j.nuclphysa.2008.03.001. arXiv:0712.4394 [nucl-th]

    Article  ADS  Google Scholar 

  94. J.I. Kapusta, C. Gale, https://doi.org/10.1017/CBO9780511535130

  95. N. Brambilla, M.A. Escobedo, J. Ghiglieri, A. Vairo, JHEP 1112, 116 (2011). https://doi.org/10.1007/JHEP12(2011)116. arXiv:1109.5826 [hep-ph]

    Article  ADS  Google Scholar 

  96. Y. Akamatsu, arXiv:2009.10559 [nucl-th]

  97. N. Brambilla, J. Ghiglieri, A. Vairo, P. Petreczky, Phys. Rev. D 78, 014017 (2008)

    Article  ADS  Google Scholar 

  98. M.A. Escobedo, J. Soto, Phys. Rev. A 78, 032520 (2008). https://doi.org/10.1103/PhysRevA.78.032520. arXiv:0804.0691 [hep-ph]

    Article  ADS  Google Scholar 

  99. N. Brambilla, M.A. Escobedo, J. Ghiglieri, J. Soto, A. Vairo, JHEP 1009, 038 (2010). https://doi.org/10.1007/JHEP09(2010)038. arXiv:1007.4156 [hep-ph]

    Article  ADS  Google Scholar 

  100. N. Brambilla, M.A. Escobedo, J. Ghiglieri, A. Vairo, JHEP 1107, 096 (2011). https://doi.org/10.1007/JHEP07(2011)096. arXiv:1105.4807 [hep-ph]

    Article  ADS  Google Scholar 

  101. N. Brambilla, M.A. Escobedo, J. Ghiglieri, A. Vairo, JHEP 1305, 130 (2013). https://doi.org/10.1007/JHEP05(2013)130. arXiv:1303.6097 [hep-ph]

    Article  ADS  Google Scholar 

  102. S. Biondini, N. Brambilla, M.A. Escobedo, A. Vairo, Phys. Rev. D 95(7), 074016 (2017). https://doi.org/10.1103/PhysRevD.95.074016. arXiv:1701.06956 [hep-ph]

    Article  ADS  Google Scholar 

  103. Y. Burnier, A. Rothkopf, Phys. Rev. D 95(5), 054511 (2017). https://doi.org/10.1103/PhysRevD.95.054511. arXiv:1607.04049 [hep-lat]

    Article  ADS  Google Scholar 

  104. D. Banerjee, S. Datta, R. Gavai, P. Majumdar, Phys. Rev. D 85, 014510 (2012). https://doi.org/10.1103/PhysRevD.85.014510. arXiv:1109.5738 [hep-lat]

    Article  ADS  Google Scholar 

  105. H.T. Ding, A. Francis, O. Kaczmarek, F. Karsch, H. Satz, W. Soldner, J. Phys. G 38, 124070 (2011). https://doi.org/10.1088/0954-3899/38/12/124070. arXiv:1107.0311 [nucl-th]

    Article  ADS  Google Scholar 

  106. A. Francis, O. Kaczmarek, M. Laine, T. Neuhaus, H. Ohno, Phys. Rev. D 92(11), 116003 (2015). https://doi.org/10.1103/PhysRevD.92.116003. arXiv:1508.04543 [hep-lat]

    Article  ADS  Google Scholar 

  107. A. Rothkopf, T. Hatsuda, S. Sasaki, Phys. Rev. Lett. 108, 162001 (2012). https://doi.org/10.1103/PhysRevLett.108.162001. arXiv:1108.1579 [hep-lat]

    Article  ADS  Google Scholar 

  108. Y. Burnier, A. Rothkopf, Phys. Rev. D 87, 114019 (2013). https://doi.org/10.1103/PhysRevD.87.114019. arXiv:1304.4154 [hep-ph]

    Article  ADS  Google Scholar 

  109. Y. Burnier, O. Kaczmarek, A. Rothkopf, Phys. Rev. Lett. 114(8), 082001 (2015). https://doi.org/10.1103/PhysRevLett.114.082001. arXiv:1410.2546 [hep-lat]

    Article  ADS  Google Scholar 

  110. D. Bala, S. Datta, Phys. Rev. D 101(3), 034507 (2020). arXiv:1909.10548 [hep-lat]

  111. D. Bala, S. Datta, PoS Lattice 2019, 164 (2019) arXiv:1912.04826 [hep-lat]

  112. S. Gupta, K. Huebner, O. Kaczmarek, Phys. Rev. D 77, 034503 (2008). https://doi.org/10.1103/PhysRevD.77.034503. arXiv:0711.2251 [hep-lat]

    Article  ADS  Google Scholar 

  113. N. Brambilla, J. Ghiglieri, P. Petreczky, A. Vairo, Phys. Rev. D 82, 074019 (2010). https://doi.org/10.1103/PhysRevD.82.074019. arXiv:1007.5172 [hep-ph]

    Article  ADS  Google Scholar 

  114. M. Berwein, N. Brambilla, J. Ghiglieri, A. Vairo, JHEP 1303, 069 (2013). https://doi.org/10.1007/JHEP03(2013)069. arXiv:1212.4413 [hep-th]

    Article  ADS  Google Scholar 

  115. M. Berwein, N. Brambilla, A. Vairo, Phys. Part. Nucl. 45(4), 656 (2014). https://doi.org/10.1134/S1063779614040029. arXiv:1312.6651 [hep-th]

    Article  Google Scholar 

  116. M. Berwein, N. Brambilla, P. Petreczky, A. Vairo, Phys. Rev. D 93(3), 034010 (2016). https://doi.org/10.1103/PhysRevD.93.034010. arXiv:1512.08443 [hep-ph]

    Article  ADS  Google Scholar 

  117. M. Berwein, N. Brambilla, P. Petreczky, A. Vairo, Phys. Rev. D 96(1), 014025 (2017). https://doi.org/10.1103/PhysRevD.96.014025. arXiv:1704.07266 [hep-ph]

    Article  ADS  Google Scholar 

  118. A. Bazavov, N. Brambilla, H.-T. Ding, P. Petreczky, H.-P. Schadler, A. Vairo, J.H. Weber, Phys. Rev. D 93(11), 114502 (2016). https://doi.org/10.1103/PhysRevD.93.114502. arXiv:1603.06637 [hep-lat]

    Article  ADS  Google Scholar 

  119. A. Bazavov et al. [TUMQCD Collaboration], Phys. Rev. D 98(5), 054511 (2018). https://doi.org/10.1103/PhysRevD.98.054511. arXiv:1804.10600 [hep-lat]

  120. S.S. Adler et al., [PHENIX Collaboration], Phys. Rev. C 69, 014901 (2004). https://doi.org/10.1103/PhysRevC.69.014901. arXiv:nucl-ex/0305030

  121. A. Adare et al., [PHENIX Collaboration], Phys. Rev. Lett. 98, 232301 (2007). https://doi.org/10.1103/PhysRevLett.98.232301. arXiv:nucl-ex/0611020

  122. A. Adare et al. [PHENIX Collaboration], Phys. Rev. Lett. 101, 122301 (2008). https://doi.org/10.1103/PhysRevLett.101.122301. arXiv:0801.0220 [nucl-ex]

  123. B.I. Abelev et al., [STAR Collaboration], Phys. Rev. C 80, 041902 (2009). https://doi.org/10.1103/PhysRevC.80.041902. arXiv:0904.0439 [nucl-ex]

  124. A. Adare et al., [PHENIX Collaboration], Phys. Rev. C 84, 054912 (2011). https://doi.org/10.1103/PhysRevC.84.054912. arXiv:1103.6269 [nucl-ex]

  125. L. Adamczyk et al. [STAR Collaboration], Phys. Rev. Lett. 111(5), 052301 (2013). https://doi.org/10.1103/PhysRevLett.111.052301. arXiv:1212.3304 [nucl-ex]

  126. L. Adamczyk et al., [STAR Collaboration], Phys. Lett. B 722, 55 (2013). https://doi.org/10.1016/j.physletb.2013.04.010. arXiv:1208.2736 [nucl-ex]

  127. A. Adare et al., [PHENIX Collaboration], Phys. Rev. C 86, 064901 (2012). https://doi.org/10.1103/PhysRevC.86.064901. arXiv:1208.2251 [nucl-ex]

  128. L. Adamczyk et al. [STAR Collaboration], Phys. Rev. C 90(2), 024906 (2014). https://doi.org/10.1103/PhysRevC.90.024906. arXiv:1310.3563 [nucl-ex]

  129. C. Aidala et al. [PHENIX Collaboration], Phys. Rev. C 90(6), 064908 (2014). https://doi.org/10.1103/PhysRevC.90.064908. arXiv:1404.1873 [nucl-ex]

  130. A. Adare et al. [PHENIX Collaboration], Phys. Rev. C 93(3), 034903 (2016). https://doi.org/10.1103/PhysRevC.93.034903. arXiv:1509.05380 [nucl-ex]

  131. L. Adamczyk et al., [STAR Collaboration], Phys. Lett. B 771, 13 (2017). https://doi.org/10.1016/j.physletb.2017.04.078. arXiv:1607.07517 [hep-ex]

  132. J. Adam et al. [STAR Collaboration], Phys. Rev. Lett. 123(13), 132302 (2019). https://doi.org/10.1103/PhysRevLett.123.132302. arXiv:1904.11658 [hep-ex]

  133. J. Adam et al., [STAR Collaboration], Phys. Lett. B 797, 134917 (2019). https://doi.org/10.1016/j.physletb.2019.134917. arXiv:1905.13669 [nucl-ex]

  134. S. Chatrchyan et al. [CMS Collaboration], JHEP 1205, 063 (2012). https://doi.org/10.1007/JHEP05(2012)063. arXiv:1201.5069 [nucl-ex]

  135. V. Khachatryan et al. [CMS Collaboration], Phys. Rev. Lett. 113(26), 262301 (2014). https://doi.org/10.1103/PhysRevLett.113.262301. arXiv:1410.1804 [nucl-ex]

  136. V. Khachatryan et al. [CMS Collaboration], Eur. Phys. J. C 77(4), 252 (2017). https://doi.org/10.1140/epjc/s10052-017-4781-1. arXiv:1610.00613 [nucl-ex]

  137. A.M. Sirunyan et al. [CMS Collaboration], Phys. Rev. Lett. 118(16), 162301 (2017). https://doi.org/10.1103/PhysRevLett.118.162301. arXiv:1611.01438 [nucl-ex]

  138. G. Aad et al., [ATLAS Collaboration], Phys. Lett. B 697, 294 (2011)

  139. G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 697, 294 (2011). https://doi.org/10.1016/j.physletb.2011.02.006. arXiv:1012.5419 [hep-ex]

  140. M. Aaboud et al. [ATLAS Collaboration], Eur. Phys. J. C 78(9), 762 (2018). https://doi.org/10.1140/epjc/s10052-018-6219-9. arXiv:1805.04077 [nucl-ex]

  141. M. Aaboud et al. [ATLAS Collaboration], Eur. Phys. J. C 78(9), 784 (2018). https://doi.org/10.1140/epjc/s10052-018-6243-9. arXiv:1807.05198 [nucl-ex]

  142. B. Abelev et al. [ALICE Collaboration], arXiv:1202.1383 [hep-ex]

  143. E. Abbas et al., [ALICE Collaboration], Phys. Rev. Lett. 111, 162301 (2013). https://doi.org/10.1103/PhysRevLett.111.162301. arXiv:1303.5880 [nucl-ex]

  144. B.B. Abelev et al. [ALICE Collaboration], Phys. Lett. B 734, 314 (2014). https://doi.org/10.1016/j.physletb.2014.05.064. arXiv:1311.0214 [nucl-ex]

  145. J. Adam et al. [ALICE Collaboration], JHEP 1507, 051 (2015). https://doi.org/10.1007/JHEP07(2015)051. arXiv:1504.07151 [nucl-ex]

  146. J. Adam et al., [ALICE Collaboration], JHEP 1605, 179 (2016). https://doi.org/10.1007/JHEP05(2016)179. arXiv:1506.08804 [nucl-ex]

  147. J. Adam et al. [ALICE Collaboration], Phys. Rev. Lett. 116(22), 222301 (2016).https://doi.org/10.1103/PhysRevLett.116.222301. arXiv:1509.08802 [nucl-ex]

  148. J. Adam et al., [ALICE Collaboration], Phys. Lett. B 766, 212 (2017). https://doi.org/10.1016/j.physletb.2016.12.064. arXiv:1606.08197 [nucl-ex]

  149. S. Acharya et al. [ALICE Collaboration], Phys. Rev. Lett. 119(24), 242301 (2017). https://doi.org/10.1103/PhysRevLett.119.242301. arXiv:1709.05260 [nucl-ex]

  150. S. Acharya et al., [ALICE Collaboration], Phys. Lett. B 785, 419 (2018). https://doi.org/10.1016/j.physletb.2018.08.047. arXiv:1805.04383 [nucl-ex]

  151. S. Acharya et al., [ALICE Collaboration], JHEP 1902, 012 (2019). https://doi.org/10.1007/JHEP02(2019)012. arXiv:1811.12727 [nucl-ex]

  152. S. Acharya et al. [ALICE Collaboration], arXiv:1909.03158 [nucl-ex]

  153. S. Acharya et al. [ALICE Collaboration], arXiv:1910.14404 [nucl-ex]

  154. L. Adamczyk et al. [STAR Collaboration], Phys. Lett. B 735, 127 (2014). Erratum: [Phys. Lett. B 743 (2015) 537]. https://doi.org/10.1016/j.physletb.2014.06.028. https://doi.org/10.1016/j.physletb.2015.01.046. arXiv:1312.3675 [nucl-ex]

  155. L. Adamczyk et al. [STAR Collaboration], Phys. Rev. C 94(6), 064904 (2016). https://doi.org/10.1103/PhysRevC.94.064904. arXiv:1608.06487 [nucl-ex]

  156. A. Adare et al. [PHENIX Collaboration], Phys. Rev. C 91(2), 024913, (2015). https://doi.org/10.1103/PhysRevC.91.024913. arXiv:1404.2246 [nucl-ex]

  157. S. Chatrchyan et al., [CMS Collaboration]. Phys. Rev. Lett. 107, 052302 (2011)

  158. V. Khachatryan et al. [CMS Collaboration], Phys. Lett. B 770, 357 (2017) https://doi.org/10.1016/j.physletb.2017.04.031 [arXiv:1611.01510 [nucl-ex]]

  159. A.M. Sirunyan et al. [CMS Collaboration], arXiv:1706.05984 [hep-ex]

  160. A. Adare et al. [PHENIX Collaboration], Phys. Rev. C 77, 024912 (2008). Erratum: [Phys. Rev. C 79 (2009) 059901]. https://doi.org/10.1103/PhysRevC.77.024912. https://doi.org/10.1103/PhysRevC.79.059901. arXiv:0903.4845 [nucl-ex]. arXiv:0711.3917 [nucl-ex]

  161. S.S. Adler et al., [PHENIX Collaboration], Phys. Rev. Lett. 96, 012304 (2006). https://doi.org/10.1103/PhysRevLett.96.012304. arXiv:nucl-ex/0507032

  162. A. Adare et al., [PHENIX Collaboration], Phys. Rev. Lett. 107, 142301 (2011). https://doi.org/10.1103/PhysRevLett.107.142301. arXiv:1010.1246 [nucl-ex]

  163. L. Adamczyk et al. [STAR Collaboration], Phys. Rev. C 93 (2016) no.6, 064904 https://doi.org/10.1103/PhysRevC.93.064904 [arXiv:1602.02212 [nucl-ex]]

  164. B.B. Abelev et al. [ALICE Collaboration], JHEP 1402, 073 (2014). https://doi.org/10.1007/JHEP02(2014)073. arXiv:1308.6726 [nucl-ex]

  165. B.B. Abelev et al. [ALICE Collaboration], JHEP 1412, 073 (2014). https://doi.org/10.1007/JHEP12(2014)073. arXiv:1405.3796 [nucl-ex]

  166. B.B. Abelev et al. [ALICE Collaboration], Phys. Lett. B 740, 105 (2015). https://doi.org/10.1016/j.physletb.2014.11.041. arXiv:1410.2234 [nucl-ex]

  167. J. Adam et al. [ALICE Collaboration], JHEP 1506, 055 (2015). https://doi.org/10.1007/JHEP06(2015)055. arXiv:1503.07179 [nucl-ex]

  168. J. Adam et al. [ALICE Collaboration], JHEP 1511, 127 (2015). https://doi.org/10.1007/JHEP11(2015)127. arXiv:1506.08808 [nucl-ex]

  169. D. Adamová et al., [ALICE Collaboration], Phys. Lett. B 776, 91 (2018). https://doi.org/10.1016/j.physletb.2017.11.008. arXiv:1704.00274 [nucl-ex]

  170. S. Acharya et al. [ALICE Collaboration], Eur. Phys. J. C 78(6), 466 (2018). https://doi.org/10.1140/epjc/s10052-018-5881-2. arXiv:1802.00765 [nucl-ex]

  171. S. Acharya et al., [ALICE Collaboration], JHEP 1807, 160 (2018). https://doi.org/10.1007/JHEP07(2018)160. arXiv:1805.04381 [nucl-ex]

  172. A.M. Sirunyan et al. [CMS Collaboration], Eur. Phys. J. C 77(4), 269 (2017). https://doi.org/10.1140/epjc/s10052-017-4828-3. arXiv:1702.01462 [nucl-ex]

  173. G. Aad et al. [ATLAS Collaboration], Phys. Rev. C 92(3), 034904 (2015). https://doi.org/10.1103/PhysRevC.92.034904. arXiv:1505.08141 [hep-ex]

  174. The ATLAS collaboration, ATLAS-CONF-2015-050

  175. R. Aaij et al. [LHCb Collaboration], JHEP 1402, 072 (2014). https://doi.org/10.1007/JHEP02(2014)072. arXiv:1308.6729 [nucl-ex]

  176. L. Grandchamp, R. Rapp, Phys. Lett. B 523, 60 (2001). https://doi.org/10.1016/S0370-2693(01)01311-9. arXiv:hep-ph/0103124

    Article  ADS  Google Scholar 

  177. L. Grandchamp, R. Rapp, Nucl. Phys. A 709, 415 (2002). https://doi.org/10.1016/S0375-9474(02)01027-8. arXiv:hep-ph/0205305

    Article  ADS  Google Scholar 

  178. L. Grandchamp, R. Rapp, G.E. Brown, Phys. Rev. Lett. 92, 212301 (2004). https://doi.org/10.1103/PhysRevLett.92.212301. arXiv:hep-ph/0306077

    Article  ADS  Google Scholar 

  179. L. Grandchamp, S. Lumpkins, D. Sun, H. van Hees, R. Rapp, Phys. Rev. C 73, 064906 (2006). https://doi.org/10.1103/PhysRevC.73.064906. arXiv:hep-ph/0507314

    Article  ADS  Google Scholar 

  180. X. Zhao, R. Rapp, Phys. Lett. B 664, 253 (2008). https://doi.org/10.1016/j.physletb.2008.03.068. arXiv:0712.2407 [hep-ph]

    Article  ADS  Google Scholar 

  181. X. Zhao, R. Rapp, arXiv:0806.1239 [nucl-th]

  182. M. Mannarelli, R. Rapp, Phys. Rev. C 72, 064905 (2005). https://doi.org/10.1103/PhysRevC.72.064905. arXiv:hep-ph/0505080

    Article  ADS  Google Scholar 

  183. D. Cabrera, R. Rapp, Phys. Rev. D 76, 114506 (2007). https://doi.org/10.1103/PhysRevD.76.114506. arXiv:hep-ph/0611134

    Article  ADS  Google Scholar 

  184. H. van Hees, M. Mannarelli, V. Greco, R. Rapp, Phys. Rev. Lett. 100, 192301 (2008). https://doi.org/10.1103/PhysRevLett.100.192301. arXiv:0709.2884 [hep-ph]

    Article  ADS  Google Scholar 

  185. F. Riek, R. Rapp, Phys. Rev. C 82, 035201 (2010). https://doi.org/10.1103/PhysRevC.82.035201. arXiv:1005.0769 [hep-ph]

    Article  ADS  Google Scholar 

  186. X. Zhao, R. Rapp, Phys. Rev. C 82, 064905 (2010). https://doi.org/10.1103/PhysRevC.82.064905. arXiv:1008.5328 [hep-ph]

    Article  ADS  Google Scholar 

  187. A. Emerick, X. Zhao, R. Rapp, Eur. Phys. J. A 48, 72 (2012). https://doi.org/10.1140/epja/i2012-12072-y. arXiv:1111.6537 [hep-ph]

    Article  ADS  Google Scholar 

  188. X. Zhao, A. Emerick, R. Rapp, Nucl. Phys. A 904–905, 611c (2013). https://doi.org/10.1016/j.nuclphysa.2013.02.088. arXiv:1210.6583 [hep-ph]

    Article  ADS  Google Scholar 

  189. S.Y.F. Liu, R. Rapp, Nucl. Phys. A 941, 179 (2015). https://doi.org/10.1016/j.nuclphysa.2015.07.001. arXiv:1501.07892 [hep-ph]

    Article  ADS  Google Scholar 

  190. X. Du, R. Rapp, M. He, arXiv:1706.08670 [hep-ph]

  191. S.Y.F. Liu, R. Rapp, Phys. Rev. C 97(3), 034918 (2018). https://doi.org/10.1103/PhysRevC.97.034918. arXiv:1711.03282 [nucl-th]

    Article  ADS  Google Scholar 

  192. X. Du, S.Y.F. Liu, R. Rapp, Phys. Lett. B 796, 20 (2019). https://doi.org/10.1016/j.physletb.2019.07.032. arXiv:1904.00113 [nucl-th]

    Article  ADS  Google Scholar 

  193. V. Greco, C.M. Ko, R. Rapp, Phys. Lett. B 595, 202 (2004). https://doi.org/10.1016/j.physletb.2004.06.064. arXiv:nucl-th/0312100

    Article  ADS  Google Scholar 

  194. B. Zhang, C.M. Ko, B.A. Li, Z.W. Lin, S. Pal, Phys. Rev. C 65, 054909 (2002). https://doi.org/10.1103/PhysRevC.65.054909. arXiv:nucl-th/0201038

    Article  ADS  Google Scholar 

  195. R.L. Thews, Nucl. Phys. A 783, 301 (2007). https://doi.org/10.1016/j.nuclphysa.2006.11.084. arXiv:hep-ph/0609121

    Article  ADS  Google Scholar 

  196. S.A. Bass, J. Phys. Conf. Ser. 50, 279 (2006)

    Article  ADS  Google Scholar 

  197. L. Yan, P. Zhuang, N. Xu, Phys. Rev. Lett. 97, 232301 (2006). https://doi.org/10.1103/PhysRevLett.97.232301. arXiv:nucl-th/0608010

    Article  ADS  Google Scholar 

  198. A. Capella, L. Bravina, E.G. Ferreiro, A.B. Kaidalov, K. Tywoniuk, E. Zabrodin, Eur. Phys. J. C 58, 437 (2008). https://doi.org/10.1140/epjc/s10052-008-0772-6. arXiv:0712.4331 [hep-ph]

    Article  ADS  Google Scholar 

  199. L. Bravina, A. Capella, E.G. Ferreiro, A.B. Kaidalov, K. Tywoniuk, E. Zabrodin, Eur. Phys. J. C 61, 865 (2009). https://doi.org/10.1140/epjc/s10052-009-0906-5. arXiv:0811.0790 [hep-ph]

    Article  ADS  Google Scholar 

  200. R. Peng, C.B. Yang, Nucl. Phys. A 837, 54 (2010). https://doi.org/10.1016/j.nuclphysa.2010.02.006

    Article  ADS  Google Scholar 

  201. E.G. Ferreiro, Phys. Lett. B 731, 57 (2014). https://doi.org/10.1016/j.physletb.2014.02.011. arXiv:1210.3209 [hep-ph]

    Article  ADS  Google Scholar 

  202. P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 690, 119 (2001). https://doi.org/10.1016/S0375-9474(01)00936-8. arXiv:nucl-th/0012064

    Article  ADS  Google Scholar 

  203. R.L. Thews, M. Schroedter, J. Rafelski, Phys. Rev. C 63, 054905 (2001). https://doi.org/10.1103/PhysRevC.63.054905. arXiv:hep-ph/0007323

    Article  ADS  Google Scholar 

  204. L. Yan, P. Zhuang, N. Xu, Phys. Rev. Lett. 97(23), 232301 (2006)

    Article  ADS  Google Scholar 

  205. A.P. Kostyuk, M.I. Gorenstein, H. Stoecker, W. Greiner, Phys. Rev. C 68, 041902 (2003). https://doi.org/10.1103/PhysRevC.68.041902. arXiv:hep-ph/0305277

    Article  ADS  Google Scholar 

  206. A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, J. Phys. G 38, 124081 (2011). https://doi.org/10.1088/0954-3899/38/12/124081. arXiv:1106.6321 [nucl-th]

    Article  ADS  Google Scholar 

  207. S. Gupta, R. Sharma, Phys. Rev. C 89(5), 057901 (2014). https://doi.org/10.1103/PhysRevC.89.057901. arXiv:1401.2930 [nucl-th]

    Article  ADS  Google Scholar 

  208. J. Hoelck, G. Wolschin, Eur. Phys. J. A 53(12), 241 (2017). https://doi.org/10.1140/epja/i2017-12441-0. arXiv:1712.06871 [hep-ph]

    Article  ADS  Google Scholar 

  209. A. Dumitru, Y. Guo, M. Strickland, Phys. Lett. B 662, 37 (2008). https://doi.org/10.1016/j.physletb.2008.02.048. arXiv:0711.4722 [hep-ph]

    Article  ADS  Google Scholar 

  210. A. Dumitru, Y. Guo, A. Mocsy, M. Strickland, Phys. Rev. D 79, 054019 (2009). https://doi.org/10.1103/PhysRevD.79.054019. arXiv:0901.1998 [hep-ph]

    Article  ADS  Google Scholar 

  211. A. Dumitru, Y. Guo, M. Strickland, Phys. Rev. D 79, 114003 (2009). https://doi.org/10.1103/PhysRevD.79.114003. arXiv:0903.4703 [hep-ph]

    Article  ADS  Google Scholar 

  212. M. Strickland, Phys. Rev. Lett. 107, 132301 (2011). https://doi.org/10.1103/PhysRevLett.107.132301. arXiv:1106.2571 [hep-ph]

    Article  ADS  Google Scholar 

  213. M. Strickland, D. Bazow, Nucl. Phys. A 879, 25 (2012). https://doi.org/10.1016/j.nuclphysa.2012.02.003. arXiv:1112.2761 [nucl-th]

    Article  ADS  Google Scholar 

  214. M. Margotta, K. McCarty, C. McGahan, M. Strickland, D. Yager-Elorriaga, Phys. Rev. D 83, 105019 105019 (2011). (Erratum-ibid. D 84, 069902 (2011)). arXiv:1101.4651 [hep-ph]

  215. C.S. Machado, F.S. Navarra, E.G. de Oliveira, J. Noronha, M. Strickland, Phys. Rev. D 88, 034009 (2013). https://doi.org/10.1103/PhysRevD.88.034009. arXiv:1305.3308 [hep-ph]

    Article  ADS  Google Scholar 

  216. J. Alford, M. Strickland, Phys. Rev. D 88, 105017 (2013). https://doi.org/10.1103/PhysRevD.88.105017. arXiv:1309.3003 [hep-ph]

    Article  ADS  Google Scholar 

  217. B. Krouppa, R. Ryblewski, M. Strickland, Phys. Rev. C 92(6), 061901 (2015). https://doi.org/10.1103/PhysRevC.92.061901. arXiv:1507.03951 [hep-ph]

    Article  ADS  Google Scholar 

  218. B. Krouppa, M. Strickland, Universe 2(3), 16 (2016). https://doi.org/10.3390/universe2030016. arXiv:1605.03561 [hep-ph]

    Article  ADS  Google Scholar 

  219. B. Krouppa, A. Rothkopf, M. Strickland, Phys. Rev. D 97(1), 016017 (2018). https://doi.org/10.1103/PhysRevD.97.016017. arXiv:1710.02319 [hep-ph]

    Article  ADS  Google Scholar 

  220. P.P. Bhaduri, N. Borghini, A. Jaiswal, M. Strickland, Phys. Rev. C 100(5), 051901 (2019). https://doi.org/10.1103/PhysRevC.100.051901. arXiv:1809.06235 [hep-ph]

    Article  ADS  Google Scholar 

  221. T. Song, S.H. Lee, Phys. Rev. D 72, 034002 (2005). https://doi.org/10.1103/PhysRevD.72.034002. arXiv:hep-ph/0501252

    Article  ADS  Google Scholar 

  222. Y. Park, K.I. Kim, T. Song, S.H. Lee, C.Y. Wong, Phys. Rev. C 76, 044907 (2007). https://doi.org/10.1103/PhysRevC.76.044907. arXiv:0704.3770 [hep-ph]

    Article  ADS  Google Scholar 

  223. T. Song, Y. Park, S.H. Lee, C.Y. Wong, Phys. Lett. B 659, 621 (2008). https://doi.org/10.1016/j.physletb.2007.11.084. arXiv:0709.0794 [hep-ph]

    Article  ADS  Google Scholar 

  224. Y. Liu, C.M. Ko, T. Song, Phys. Rev. C 88(6), 064902 (2013). https://doi.org/10.1103/PhysRevC.88.064902. arXiv:1307.4427 [hep-ph]

    Article  ADS  Google Scholar 

  225. T. Song, W. Park, S.H. Lee, Phys. Rev. C 81, 034914 (2010). https://doi.org/10.1103/PhysRevC.81.034914. arXiv:1002.1884 [nucl-th]

    Article  ADS  Google Scholar 

  226. T. Song, C.M. Ko, S.H. Lee, J. Xu, Phys. Rev. C 83, 014914 (2011). https://doi.org/10.1103/PhysRevC.83.014914. arXiv:1008.2730 [hep-ph]

    Article  ADS  Google Scholar 

  227. T. Song, K.C. Han, C.M. Ko, Phys. Rev. C 84, 034907 (2011). https://doi.org/10.1103/PhysRevC.84.034907. https://doi.org/10.1103/PhysRevC.84.039902. arXiv:1103.6197 [nucl-th]

  228. T. Song, K.C. Han, C.M. Ko, Phys. Rev. C 85, 014902 (2012). arXiv:1109.6691 [nucl-th]

  229. T. Song, C.M. Ko, S.H. Lee, Phys. Rev. C 87(3), 034910 (2013). https://doi.org/10.1103/PhysRevC.87.034910. arXiv:1302.4395 [nucl-th]

    Article  ADS  Google Scholar 

  230. S.H. Lee, K. Morita, T. Song, C.M. Ko, Phys. Rev. D 89(9), 094015 (2014). https://doi.org/10.1103/PhysRevD.89.094015. arXiv:1304.4092 [nucl-th]

    Article  ADS  Google Scholar 

  231. T. Song, Phys. Rev. C 89(4), 044903 (2014). https://doi.org/10.1103/PhysRevC.89.044903. arXiv:1402.3451 [nucl-th]

    Article  ADS  Google Scholar 

  232. T. Song, C.M. Ko, S.H. Lee, Phys. Rev. C 91(4), 044909 (2015). https://doi.org/10.1103/PhysRevC.91.044909. arXiv:1502.05734 [nucl-th]

    Article  ADS  Google Scholar 

  233. R. Baier, R. Rückl, Zeitschrift für Physik C Part. Fields, 0170-9739, 19(3), 251–266 (1983)

  234. B. Humpert, Phys. Lett. B 184(1), 105–107 (1987)

    Article  ADS  Google Scholar 

  235. P.L. Cho, A.K. Leibovich, Phys. Rev. D 53, 6203 (1996)

    Article  ADS  Google Scholar 

  236. P.L. Cho, A.K. Leibovich, Phys. Rev. D 53, 150 (1996)

    Article  ADS  Google Scholar 

  237. E. Braaten, S. Fleming, A.K. Leibovich, Phys. Rev. D 63, 094006 (2001)

    Article  ADS  Google Scholar 

  238. K. Sridhar, Phys. Rev. Lett. 77, 4880 (1996). https://doi.org/10.1103/PhysRevLett.77.4880. arXiv:hep-ph/9609285

    Article  ADS  Google Scholar 

  239. M. Butenschon, B.A. Kniehl, Phys. Rev. Lett. 106, 022003 (2011). arXiv:1009.5662 [hep-ph]

  240. M. Butenschoen, B.A. Kniehl, Phys. Rev. D 84, 051501 (2011). arXiv:1105.0820 [hep-ph]

  241. M. Butenschoen, B.A. Kniehl, Phys. Rev. Lett. 107, 232001 (2011). arXiv:1109.1476 [hep-ph]

  242. K. Wang, Y.Q. Ma, K.T. Chao, Phys. Rev. D 85, 114003 (2012). https://doi.org/10.1103/PhysRevD.85.114003. arXiv:1202.6012 [hep-ph]

    Article  ADS  Google Scholar 

  243. H.S. Shao, H. Han, Y.Q. Ma, C. Meng, Y.J. Zhang, K.T. Chao, JHEP 1505, 103 (2015). https://doi.org/10.1007/JHEP05(2015)103. arXiv:1411.3300 [hep-ph]

    Article  ADS  Google Scholar 

  244. R. Sharma, I. Vitev, Phys. Rev. C 87(4), 044905 (2013). https://doi.org/10.1103/PhysRevC.87.044905. arXiv:1203.0329 [hep-ph]

    Article  ADS  Google Scholar 

  245. M. Gyulassy, X.N. Wang, Nucl. Phys. B 420, 583 (1994). https://doi.org/10.1016/0550-3213(94)90079-5. arXiv:nucl-th/9306003

    Article  ADS  Google Scholar 

  246. R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne, D. Schiff, Nucl. Phys. B 484, 265 (1997). https://doi.org/10.1016/S0550-3213(96)00581-0. arXiv:hep-ph/9608322

    Article  ADS  Google Scholar 

  247. B.G. Zakharov, JETP Lett. 63, 952 (1996). https://doi.org/10.1134/1.567126. arXiv:hep-ph/9607440

    Article  ADS  Google Scholar 

  248. R. Baier, Y.L. Dokshitzer, A.H. Mueller, D. Schiff, Nucl. Phys. B 531, 403 (1998). https://doi.org/10.1016/S0550-3213(98)00546-X. arXiv:hep-ph/9804212

    Article  ADS  Google Scholar 

  249. M. Gyulassy, P. Levai, I. Vitev, Nucl. Phys. B 571, 197 (2000). https://doi.org/10.1016/S0550-3213(99)00713-0. arXiv:hep-ph/9907461

    Article  ADS  Google Scholar 

  250. M. Gyulassy, P. Levai, I. Vitev, Nucl. Phys. B 594, 371 (2001). https://doi.org/10.1016/S0550-3213(00)00652-0. arXiv:nucl-th/0006010

    Article  ADS  Google Scholar 

  251. U.A. Wiedemann, Nucl. Phys. B 588, 303 (2000). https://doi.org/10.1016/S0550-3213(00)00457-0. arXiv:hep-ph/0005129

    Article  ADS  Google Scholar 

  252. M. Gyulassy, P. Levai, I. Vitev, Phys. Rev. D 66, 014005 (2002). https://doi.org/10.1103/PhysRevD.66.014005. arXiv:nucl-th/0201078

    Article  ADS  Google Scholar 

  253. A. Adil, I. Vitev, Phys. Lett. B 649, 139 (2007)

    Article  ADS  Google Scholar 

  254. R. Sharma, I. Vitev, B.W. Zhang, Phys. Rev. C 80, 054902 (2009). https://doi.org/10.1103/PhysRevC.80.054902. arXiv:0904.0032 [hep-ph]

    Article  ADS  Google Scholar 

  255. Y. Makris, I. Vitev, JHEP 1910, 111 (2019). https://doi.org/10.1007/JHEP10(2019)111. arXiv:1906.04186 [hep-ph]

    Article  ADS  Google Scholar 

  256. Y. Makris, I. Vitev, Nucl. Phys. A 1005, 121848 (2021). arXiv:1912.08008 [hep-ph]

  257. N. Dutta, N. Borghini, Mod. Phys. Lett. A 30(37), 1550205 (2015). https://doi.org/10.1142/S0217732315502053. arXiv:1206.2149 [nucl-th]

    Article  ADS  Google Scholar 

  258. H.P. Breuer, F. Petruccione, Oxford, UK: Univ. Pr. (2002), p. 625

  259. N. Borghini, C. Gombeaud, arXiv:1103.2945 [hep-ph]

  260. N. Borghini, C. Gombeaud, Eur. Phys. J. C 72, 2000 (2012). https://doi.org/10.1140/epjc/s10052-012-2000-7. arXiv:1109.4271 [nucl-th]

    Article  ADS  Google Scholar 

  261. C. Young, K. Dusling, Phys. Rev. C 87(6), 065206 (2013). https://doi.org/10.1103/PhysRevC.87.065206. arXiv:1001.0935 [nucl-th]

    Article  ADS  Google Scholar 

  262. G. Lindblad, Commun. Math. Phys. 48, 119 (1976). https://doi.org/10.1007/BF01608499

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge collaborators on various projects related to heavy quark and quarkonium physics, Samuel Aronson, Evan Borras, Sourendu Gupta, Brian Odegard, Anurag Tiwari, Ivan Vitev, and Ben-Wei Zhang. We also thank Dibyendu Bala, Saumen Datta for several illuminating discussions. We also acknowledge discussions and exchanges with Yukiano Akamatsu, Jean-Paul Blaizot, Nora Brambilla, Alexander Rothkopf, and Peter Petreczky.

Author information

Authors and Affiliations

Authors

Contributions

This single author of this review is Rishi Sharma.

Corresponding author

Correspondence to Rishi Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R. Quarkonium propagation in the quark–gluon plasma. Eur. Phys. J. Spec. Top. 230, 697–718 (2021). https://doi.org/10.1140/epjs/s11734-021-00025-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00025-z

Navigation