Skip to main content
Log in

Precision dispersive approaches versus unitarized chiral perturbation theory for the lightest scalar resonances \(\sigma /f_0(500) \) and \(\kappa /K_0^*(700) \)

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

For several decades, the \(\sigma /f_0(500)\) and \(\kappa /K_0^*(700)\) resonances have been subject to long-standing debate. Both their existence and properties were controversial until very recently. In this tutorial review, we compare model-independent dispersive and analytic techniques versus unitarized Chiral Perturbation Theory, when applied to the lightest scalar mesons \(\sigma /f_0(500) \) and \(\kappa /K_0^*(700) \). Generically, the former have settled the long-standing controversy about the existence of these states, providing a precise determination of their parameters, whereas unitarization of chiral effective theories allows us to understand their nature, spectroscopic classification and dependence on QCD parameters. Here we review in a pedagogical way their uses, advantages and caveats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. Although we have quoted the last RPP edition, all previous ones can be found in the Particle Data Group web-page at https://pdg.lbl.gov/rpp-archive/.

  2. Literally, the authors of that compilation wrote: “We are beginning to think that \(\kappa \) should be classified along with flying saucers, the Loch Ness Monster, and the Abominable Snowman”.

  3. See reference 15 in [41].

  4. C. Hanhart. Private communication.

  5. On top of that even with the same method and data there were several ambiguities leading to different possible solutions, like for instance the so-called up or down solutions [13, 14]. Over the years it has been possible to disentangle those ambiguities with other input or dispersion relations [93]. We omit this discussion here and refer the reader to the review in [36] and references therein.

  6. In the literature these are also written as \(\delta _{I\ell },\delta ^{(I)}_\ell \) and \(\eta _{I\ell },\eta ^{(I)}_\ell \) as we will see in several figures of this review.

  7. The only exception is the \(\eta '\) whose huge mass is due to another well-understood effect, which is the chiral anomaly, beyond the scope of this tutorial review.

  8. While this work was in the referee process a review has appeared, where large-\(N_c\) behavior of tetraquarks is reviewed in great detail [212].

References

  1. M. Johnson, E. Teller, Phys. Rev. 98, 783 (1955). https://doi.org/10.1103/PhysRev.98.783

    Article  ADS  Google Scholar 

  2. J.S. Schwinger, Ann. Phys. 2, 407 (1957). https://doi.org/10.1016/0003-4916(57)90015-5

    Article  MathSciNet  ADS  Google Scholar 

  3. M. Gell-Mann, M. Levy, Nuovo Cim. 16, 705 (1960). https://doi.org/10.1007/BF02859738

    Article  ADS  Google Scholar 

  4. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961a). https://doi.org/10.1103/PhysRev.122.345

    Article  ADS  Google Scholar 

  5. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 124, 246 (1961b). https://doi.org/10.1103/PhysRev.124.246

    Article  ADS  Google Scholar 

  6. T. Hatsuda, T. Kunihiro, Phys. Rep. 247, 221 (1994). https://doi.org/10.1016/0370-1573(94)90022-1. arXiv:hep-ph/9401310

    Article  ADS  Google Scholar 

  7. S. Weinberg, Proceedings, Symposium Honoring Julian Schwinger on the Occasion of his 60th Birthday: Los Angeles, California, February 18–19, 1978. Physica A 96, 327 (1979). https://doi.org/10.1016/0378-4371(79)90223-1

    Article  ADS  Google Scholar 

  8. J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984). https://doi.org/10.1016/0003-4916(84)90242-2

    Article  ADS  Google Scholar 

  9. J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 465 (1985). https://doi.org/10.1016/0550-3213(85)90492-4

    Article  ADS  Google Scholar 

  10. J. Batley et al., (NA48/2). Eur. Phys. J. C 70, 635 (2010). https://doi.org/10.1140/epjc/s10052-010-1480-6

  11. P. Zyla et al. (Particle Data Group), PTEP 2020, 083C01 (2020). https://doi.org/10.1093/ptep/ptaa104

  12. S.D. Protopopescu, M. Alston-Garnjost, A. Barbaro-Galtieri, S.M. Flatte, J.H. Friedman, T.A. Lasinski, G.R. Lynch, M.S. Rabin, F.T. Solmitz, Phys. Rev. D 7, 1279 (1973). https://doi.org/10.1103/PhysRevD.7.1279

    Article  ADS  Google Scholar 

  13. B. Hyams et al., Nucl. Phys. B 64, 134 (1973). https://doi.org/10.1016/0550-3213(73)90618-4

    Article  ADS  Google Scholar 

  14. G. Grayer et al., Nucl. Phys. B 75, 189 (1974). https://doi.org/10.1016/0550-3213(74)90545-8

    Article  ADS  Google Scholar 

  15. E. van Beveren, T. Rijken, K. Metzger, C. Dullemond, G. Rupp, J. Ribeiro, Z. Phys. C 30, 615 (1986). https://doi.org/10.1007/BF01571811. arXiv:0710.4067 [hep-ph]

    Article  ADS  Google Scholar 

  16. M. Lukashov, Y.A. Simonov, Phys. Rev. D 101, 094028 (2020). https://doi.org/10.1103/PhysRevD.101.094028. arXiv:1909.10384 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  17. K.L. Au, D. Morgan, M.R. Pennington, Phys. Rev. D 35, 1633 (1987). https://doi.org/10.1103/PhysRevD.35.1633

    Article  ADS  Google Scholar 

  18. B. Zou, D. Bugg, Phys. Rev. D 48, 3948 (1993). https://doi.org/10.1103/PhysRevD.48.R3948

    Article  ADS  Google Scholar 

  19. B. Zou, D. Bugg, Phys. Rev. D 50, 591 (1994). https://doi.org/10.1103/PhysRevD.50.591

    Article  ADS  Google Scholar 

  20. G. Janssen, B.C. Pearce, K. Holinde, J. Speth, Phys. Rev. D 52, 2690 (1995). https://doi.org/10.1103/PhysRevD.52.2690. arXiv:nucl-th/9411021 [nucl-th]

    Article  ADS  Google Scholar 

  21. A. Dobado, J.R. Pelaez, Phys. Rev. D 56, 3057 (1997). https://doi.org/10.1103/PhysRevD.56.3057. arXiv:hep-ph/9604416 [hep-ph]

    Article  ADS  Google Scholar 

  22. J.A. Oller, E. Oset, Nucl. Phys. A 620, 438 (1997). https://doi.org/10.1016/S0375-9474(99)00427-3, https://doi.org/10.1016/S0375-9474(97)00160-7arXiv:hep-ph/9702314 [hep-ph], [Erratum: Nucl. Phys. A652,407(1999)]

  23. D. Asner et al. (CLEO Collaboration), Phys. Rev. D 61, 012002 (1999). https://doi.org/10.1103/PhysRevD.61.012002, arXiv:hep-ex/9902022 [hep-ex]

  24. E. Aitala et al., (E791). Phys. Rev. Lett. 86, 770 (2001). https://doi.org/10.1103/PhysRevLett.86.770arXiv:hep-ex/0007028

  25. E. Aitala et al., (E791). Phys. Rev. Lett. 89, 121801 (2002). https://doi.org/10.1103/PhysRevLett.89.121801arXiv:hep-ex/0204018

  26. M. Ablikim et al., (BES). Phys. Rev. D 70, 092004 (2004). https://doi.org/10.1103/PhysRevD.70.092004arXiv:hep-ex/0409034

  27. M. Ablikim et al., (BES). Phys. Lett. B 645, 19 (2007). https://doi.org/10.1016/j.physletb.2006.11.056arXiv:hep-ex/0610023

  28. G. Bonvicini et al., (CLEO). Phys. Rev. D 76, 012001 (2007). https://doi.org/10.1103/PhysRevD.76.012001arXiv:0704.3954 [hep-ex]

  29. I. Caprini, G. Colangelo, H. Leutwyler, Phys. Rev. Lett. 96, 132001 (2006). https://doi.org/10.1103/PhysRevLett.96.132001. arXiv:hep-ph/0512364 [hep-ph]

    Article  ADS  Google Scholar 

  30. B. Ananthanarayan, G. Colangelo, J. Gasser, H. Leutwyler, Phys. Rep. 353, 207 (2001). https://doi.org/10.1016/S0370-1573(01)00009-6. arXiv:hep-ph/0005297 [hep-ph]

    Article  ADS  Google Scholar 

  31. G. Colangelo, J. Gasser, H. Leutwyler, Nucl. Phys. B 603, 125 (2001). https://doi.org/10.1016/S0550-3213(01)00147-X. arXiv:hep-ph/0103088 [hep-ph]

    Article  ADS  Google Scholar 

  32. S. Roy, Helv. Phys. Acta 63, 627 (1990)

    Google Scholar 

  33. G. Colangelo, J. Gasser, A. Rusetsky, Eur. Phys. J. C 59, 777 (2009). https://doi.org/10.1140/epjc/s10052-008-0818-9. arXiv:0811.0775 [hep-ph]

    Article  ADS  Google Scholar 

  34. R. García-Martín, R. Kamiński, J.R. Peláez, J. Ruiz de Elvira, F.J. Ynduráin, Phys. Rev. D 83, 074004 (2011a). https://doi.org/10.1103/PhysRevD.83.074004. arXiv:1102.2183 [hep-ph]

    Article  ADS  Google Scholar 

  35. R. García-Martín, R. Kaminski, J.R. Peláez, J Ruiz de Elvira, Phys.Rev.Lett. 107, 072001 (2011b). https://doi.org/10.1103/PhysRevLett.107.072001. arXiv:1107.1635 [hep-ph]

    Article  ADS  Google Scholar 

  36. J.R. Peláez, Phys. Rep. 658, 1 (2016). https://doi.org/10.1016/j.physrep.2016.09.001. arXiv:1510.00653 [hep-ph]

    Article  ADS  Google Scholar 

  37. R. Dalitz, Oxford International Conference on Elementary Particles 157–181 (1966)

  38. A.H. Rosenfeld, A. Barbaro-Galtieri, W.J. Podolsky, L.R. Price, P. Soding, C.G. Wohl, M. Roos, W.J. Willis, Rev. Mod. Phys. 39, 1 (1967). https://doi.org/10.1103/RevModPhys.39.1

    Article  ADS  Google Scholar 

  39. V. Mathur, S. Okubo, L. Pandit, Phys. Rev. Lett. 16, 371 (1966). https://doi.org/10.1103/PhysRevLett.16.371, [Erratum: Phys. Rev. Lett. 16, 601 (1966)]

  40. S. Matsuda, S. Oneda, J. Sucher, Phys. Rev. 159, 1247 (1967). https://doi.org/10.1103/PhysRev.159.1247

    Article  ADS  Google Scholar 

  41. T. Trippe, C. Chien, E. Malamud, J. Mellema, P. Schlein, W. Slater, D. Stork, H. Ticho, Phys. Lett. B 28, 203 (1968). https://doi.org/10.1016/0370-2693(68)90016-6, [Erratum: Phys. Lett. B 29, 390-390 (1969)]

  42. P. Estabrooks, R.K. Carnegie, A.D. Martin, W.M. Dunwoodie, T.A. Lasinski, D.W.G.S. Leith, Nucl. Phys. B 133, 490 (1978). https://doi.org/10.1016/0550-3213(78)90238-9

    Article  ADS  Google Scholar 

  43. D.V. Bugg, Phys. Lett. B 572, 1 (2003). https://doi.org/10.1016/j.physletb.2004.06.050, https://doi.org/10.1016/j.physletb.2003.07.078, [Erratum: Phys. Lett.B595,556(2004)]

  44. J.A. Oller, E. Oset, J.R. Pelaez, Phys. Rev. D 59, 074001 (1999). https://doi.org/10.1103/PhysRevD.59.074001, https://doi.org/10.1103/PhysRevD.60.099906, https://doi.org/10.1103/PhysRevD.75.099903, arXiv:hep-ph/9804209 [hep-ph], [Erratum: Phys. Rev. D75,099903(2007)]

  45. J.A. Oller, E. Oset, Phys. Rev. D 60, 074023 (1999). https://doi.org/10.1103/PhysRevD.60.074023. arXiv:hep-ph/9809337 [hep-ph]

    Article  ADS  Google Scholar 

  46. J.R. Pelaez, Mod. Phys. Lett. A 19, 2879 (2004a). https://doi.org/10.1142/S0217732304016160. arXiv:hep-ph/0411107 [hep-ph]

    Article  ADS  Google Scholar 

  47. S. Ishida, M. Ishida, T. Ishida, K. Takamatsu, T. Tsuru, Prog. Theor. Phys. 98, 621 (1997). https://doi.org/10.1143/PTP.98.621. arXiv:hep-ph/9705437

    Article  ADS  Google Scholar 

  48. S. Cherry, M. Pennington, Nucl. Phys. A 688, 823 (2001). https://doi.org/10.1016/S0375-9474(00)00587-X. arXiv:hep-ph/0005208

    Article  ADS  Google Scholar 

  49. M. Ablikim et al. (BES)., Phys. Lett. B 633, 681 (2006). https://doi.org/10.1016/j.physletb.2005.12.062arXiv:hep-ex/0506055

  50. P. Buettiker, S. Descotes-Genon, B. Moussallam, Eur. Phys. J. C 33, 409 (2004). https://doi.org/10.1140/epjc/s2004-01591-1. arXiv:hep-ph/0310283 [hep-ph]

    Article  ADS  Google Scholar 

  51. S. Descotes-Genon, B. Moussallam, Eur. Phys. J. C 48, 553 (2006). https://doi.org/10.1140/epjc/s10052-006-0036-2. arXiv:hep-ph/0607133 [hep-ph]

    Article  ADS  Google Scholar 

  52. J. Pelaez, A. Rodas, Phys. Rev. D 93, 074025 (2016). https://doi.org/10.1103/PhysRevD.93.074025. arXiv:1602.08404 [hep-ph]

    Article  ADS  Google Scholar 

  53. J. Pelaez, A. Rodas, Eur. Phys. J. C 78, 897 (2018). https://doi.org/10.1140/epjc/s10052-018-6296-9. arXiv:1807.04543 [hep-ph]

    Article  ADS  Google Scholar 

  54. J. Peláez, A. Rodas, Phys. Rev. Lett. 124, 172001 (2020). https://doi.org/10.1103/PhysRevLett.124.172001. arXiv:2001.08153 [hep-ph]

    Article  ADS  Google Scholar 

  55. J. Peláez, A. Rodas, (2020), arXiv:2010.11222 [hep-ph]

  56. J.R. Peláez, A. Rodas, J. Ruiz de Elvira, Eur. Phys. J. C 77, 91 (2017). https://doi.org/10.1140/epjc/s10052-017-4668-1. arXiv:1612.07966 [hep-ph]

    Article  ADS  Google Scholar 

  57. T. Cohen, F.J. Llanes-Estrada, J.R. Peláez, J. Ruiz de Elvira, Phys. Rev. D 90, 036003 (2014). https://doi.org/10.1103/PhysRevD.90.036003. arXiv:1405.4831 [hep-ph]

    Article  ADS  Google Scholar 

  58. B. Berg, A. Billoire, Nucl. Phys. B 221, 109 (1983). https://doi.org/10.1016/0550-3213(83)90620-X

    Article  ADS  Google Scholar 

  59. C. Michael, M. Teper, Nucl. Phys. B 314, 347 (1989). https://doi.org/10.1016/0550-3213(89)90156-9

    Article  ADS  Google Scholar 

  60. G.S. Bali, K. Schilling, A. Hulsebos, A.C. Irving, C. Michael, P.W. Stephenson (UKQCD), Phys.Lett. B309, 378 (1993). https://doi.org/10.1016/0370-2693(93)90948-H, arXiv:hep-lat/9304012 [hep-lat]

  61. J. Sexton, A. Vaccarino, D. Weingarten, Phys. Rev. Lett. 75, 4563 (1995). https://doi.org/10.1103/PhysRevLett.75.4563. arXiv:hep-lat/9510022

    Article  ADS  Google Scholar 

  62. C.J. Morningstar, M.J. Peardon, Phys. Rev. D 60, 034509 (1999). https://doi.org/10.1103/PhysRevD.60.034509. arXiv:hep-lat/9901004 [hep-lat]

    Article  ADS  Google Scholar 

  63. A. Hart, M. Teper (UKQCD), Phys. Rev. D 65, 034502 (2002). https://doi.org/10.1103/PhysRevD.65.034502, arXiv:hep-lat/0108022

  64. Y. Chen et al., Phys. Rev. D 73, 014516 (2006). arXiv:hep-lat/0510074

    Article  ADS  Google Scholar 

  65. C.M. Richards, A.C. Irving, E.B. Gregory, C. McNeile (UKQCD), Phys. Rev. D 82, 034501 (2010). https://doi.org/10.1103/PhysRevD.82.034501, arXiv:1005.2473 [hep-lat]

  66. E. Gregory, A. Irving, B. Lucini, C. McNeile, A. Rago, C. Richards, E. Rinaldi, JHEP 10, 170 (2012). https://doi.org/10.1007/JHEP10(2012)170. arXiv:1208.1858 [hep-lat]

    Article  ADS  Google Scholar 

  67. L. Roca, E. Oset, J. Singh, Phys. Rev. D 72, 014002 (2005). https://doi.org/10.1103/PhysRevD.72.014002. arXiv:hep-ph/0503273 [hep-ph]

    Article  ADS  Google Scholar 

  68. R.L. Jaffe, Phys. Rev. D 15, 267 (1977). https://doi.org/10.1103/PhysRevD.15.267

    Article  ADS  Google Scholar 

  69. R.L. Jaffe, Proceedings, 4th International Workshop on QCD - Theory and Experiment (QCD@Work 2007), AIP Conf.Proc. 964, 1 (2007). https://doi.org/10.1063/1.2823850, arXiv:hep-ph/0701038 [hep-ph], [Prog.Theor.Phys.Suppl.168,127(2007)]

  70. N. Achasov, G. Shestakov, Phys. Rev. D 49, 5779 (1994). https://doi.org/10.1103/PhysRevD.49.5779

    Article  ADS  Google Scholar 

  71. N. Achasov, A. Kiselev, Phys. Rev. D 73, 054029 (2006). https://doi.org/10.1103/PhysRevD.73.054029arXiv:hep-ph/0512047, [Erratum: Phys. Rev. D 74, 059902 (2006)]

  72. F. Giacosa, Phys. Rev. D 74, 014028 (2006). https://doi.org/10.1103/PhysRevD.74.014028. arXiv:hep-ph/0605191

    Article  ADS  Google Scholar 

  73. D. Parganlija, F. Giacosa, D.H. Rischke, Phys. Rev. D 82, 054024 (2010). https://doi.org/10.1103/PhysRevD.82.054024. arXiv:1003.4934 [hep-ph]

    Article  ADS  Google Scholar 

  74. G. ’t Hooft, Nucl. Phys. B 72, 461 (1974). https://doi.org/10.1016/0550-3213(74)90154-0

  75. E. Witten, Ann. Phys. 128, 363 (1980). https://doi.org/10.1016/0003-4916(80)90325-5

    Article  ADS  Google Scholar 

  76. S. Weinberg, Phys. Rev. Lett. 110, 261601 (2013). https://doi.org/10.1103/PhysRevLett.110.261601. arXiv:1303.0342 [hep-ph]

    Article  ADS  Google Scholar 

  77. J.R. Pelaez, Phys. Rev. Lett. 92, 102001 (2004b). https://doi.org/10.1103/PhysRevLett.92.102001. arXiv:hep-ph/0309292 [hep-ph]

    Article  ADS  Google Scholar 

  78. J.R. Pelaez, G. Rios, Phys. Rev. Lett. 97, 242002 (2006). https://doi.org/10.1103/PhysRevLett.97.242002. arXiv:hep-ph/0610397 [hep-ph]

    Article  ADS  Google Scholar 

  79. J. Ruiz de Elvira, J.R. Pelaez, M.R. Pennington, D.J. Wilson, Phys. Rev. D 84, 096006 (2011). https://doi.org/10.1103/PhysRevD.84.096006. arXiv:1009.6204 [hep-ph]

    Article  ADS  Google Scholar 

  80. Z.-H. Guo, J. Oller, Phys. Rev. D 84, 034005 (2011). https://doi.org/10.1103/PhysRevD.84.034005. arXiv:1104.2849 [hep-ph]

    Article  ADS  Google Scholar 

  81. Z.-H. Guo, J. Oller, J. Ruiz de Elvira, Phys. Lett. B 712, 407 (2012a). https://doi.org/10.1016/j.physletb.2012.05.021. arXiv:1203.4381 [hep-ph]

    Article  ADS  Google Scholar 

  82. Z.-H. Guo, J.A. Oller, J. Ruiz de Elvira, Phys. Rev. D 86, 054006 (2012b). https://doi.org/10.1103/PhysRevD.86.054006. arXiv:1206.4163 [hep-ph]

    Article  ADS  Google Scholar 

  83. J. Nebreda, J. Pelaez, G. Rios, Phys. Rev. D 84, 074003 (2011a). https://doi.org/10.1103/PhysRevD.84.074003. arXiv:1107.4200 [hep-ph]

    Article  ADS  Google Scholar 

  84. D. Black, A.H. Fariborz, F. Sannino, J. Schechter, Phys. Rev. D 59, 074026 (1999). https://doi.org/10.1103/PhysRevD.59.074026. arXiv:hep-ph/9808415 [hep-ph]

    Article  ADS  Google Scholar 

  85. D. Black, A.H. Fariborz, F. Sannino, J. Schechter, Phys. Rev. D 58, 054012 (1998). https://doi.org/10.1103/PhysRevD.58.054012. arXiv:hep-ph/9804273 [hep-ph]

    Article  ADS  Google Scholar 

  86. E. van Beveren, G. Rupp, (2020). https://doi.org/10.1016/j.ppnp.2020.103845, https://doi.org/10.1016/j.ppnp.2020.103845, arXiv:2012.03693 [hep-ph]

  87. G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B 321, 311 (1989). https://doi.org/10.1016/0550-3213(89)90346-5

    Article  ADS  Google Scholar 

  88. C. Goebel, Phys. Rev. Lett. 1, 337 (1958). https://doi.org/10.1103/PhysRevLett.1.337

    Article  ADS  Google Scholar 

  89. G.F. Chew, F.E. Low, Phys. Rev. 113, 1640 (1959). https://doi.org/10.1103/PhysRev.113.1640

    Article  ADS  Google Scholar 

  90. P. Estabrooks, A.D. Martin, Nucl. Phys. B 102, 537 (1976). https://doi.org/10.1016/0550-3213(76)90436-3

    Article  ADS  Google Scholar 

  91. P. Estabrooks et al., Phys. Lett. 60B, 473 (1976a). https://doi.org/10.1016/0370-2693(76)90710-3

    Article  ADS  Google Scholar 

  92. P. Estabrooks et al., Nucl. Phys. B 106, 61 (1976b). https://doi.org/10.1016/0550-3213(76)90369-2

    Article  ADS  Google Scholar 

  93. R. Kaminski, L. Lesniak, B. Loiseau, Phys. Lett. B 551, 241 (2003). https://doi.org/10.1016/S0370-2693(02)03021-6. arXiv:hep-ph/0210334 [hep-ph]

    Article  ADS  Google Scholar 

  94. J. Nys, V. Mathieu, C. Fernández-Ramírez, A. Jackura, M. Mikhasenko, A. Pilloni, N. Sherrill, J. Ryckebusch, A.P. Szczepaniak, G. Fox (JPAC), Phys.Lett. B779, 77 (2018). https://doi.org/10.1016/j.physletb.2018.01.075, arXiv:1710.09394 [hep-ph]

  95. P. Estabrooks, A.D. Martin, Nucl. Phys. B 79, 301 (1974). https://doi.org/10.1016/0550-3213(74)90488-X

    Article  ADS  Google Scholar 

  96. R. Kaminski, L. Lesniak, K. Rybicki, Z. Phys. C 74, 79 (1997). https://doi.org/10.1007/s002880050372. arXiv:hep-ph/9606362

    Article  Google Scholar 

  97. R. Mercer et al., Nucl. Phys. B 32, 381 (1971). https://doi.org/10.1016/0550-3213(71)90483-4

    Article  ADS  Google Scholar 

  98. H.ea Bingham, Nucl. Phys. B 41, 1 (1972). https://doi.org/10.1016/0550-3213(72)90419-1

    Article  ADS  Google Scholar 

  99. S ea Baker, Nucl. Phys. B 99, 211 (1975). https://doi.org/10.1016/0550-3213(75)90002-4

    Article  ADS  Google Scholar 

  100. D. Aston et al., Nucl. Phys. B 296, 493 (1988). https://doi.org/10.1016/0550-3213(88)90028-4

    Article  ADS  Google Scholar 

  101. M. Amaryan et al. (KLF), (2020), arXiv:2008.08215 [nucl-ex]

  102. H. Leutwyler, AIP Conf. Proc. 1030, 46 (2008). https://doi.org/10.1063/1.2973552. arXiv:0804.3182 [hep-ph]

    Article  ADS  Google Scholar 

  103. B. Moussallam, Eur. Phys. J. C 71, 1814 (2011). https://doi.org/10.1140/epjc/s10052-011-1814-z. arXiv:1110.6074 [hep-ph]

    Article  ADS  Google Scholar 

  104. I. Caprini, P. Masjuan, J. Ruiz de Elvira, J.J. Sanz-Cillero, Phys. Rev. D 93, 076004 (2016). https://doi.org/10.1103/PhysRevD.93.076004. arXiv:1602.02062 [hep-ph]

    Article  ADS  Google Scholar 

  105. R.-A. Tripolt, I. Haritan, J. Wambach, N. Moiseyev, Phys. Lett. B 774, 411 (2017). https://doi.org/10.1016/j.physletb.2017.10.001. arXiv:1610.03252 [hep-ph]

    Article  ADS  Google Scholar 

  106. S. Dubnicka, A.Z. Dubnickova, R. Kamiński, A. Liptaj, Phys. Rev. D 94(5), 054036 (2016). https://doi.org/10.1103/PhysRevD.94.054036

  107. I. Caprini, Phys. Rev. D 77, 114019 (2008). https://doi.org/10.1103/PhysRevD.77.114019. arXiv:0804.3504 [hep-ph]

    Article  ADS  Google Scholar 

  108. G. Bonvicini et al. (CLEO), Phys. Rev. D 78, 052001 (2008). https://doi.org/10.1103/PhysRevD.78.052001arXiv:0802.4214 [hep-ex]

  109. Z. Zhou, H. Zheng, Nucl. Phys. A 775, 212 (2006). https://doi.org/10.1016/j.nuclphysa.2006.06.170. arXiv:hep-ph/0603062

    Article  ADS  Google Scholar 

  110. R.A. Briceño, J.J. Dudek, R.G. Edwards, D.J. Wilson, Phys. Rev. Lett. 118, 022002 (2017). https://doi.org/10.1103/PhysRevLett.118.022002. arXiv:1607.05900 [hep-ph]

    Article  ADS  Google Scholar 

  111. R.A. Briceño, J.J. Dudek, R.G. Edwards, D.J. Wilson, Phys. Rev. D 97, 054513 (2018). https://doi.org/10.1103/PhysRevD.97.054513. arXiv:1708.06667 [hep-lat]

    Article  ADS  Google Scholar 

  112. D. Guo, A. Alexandru, R. Molina, M. Mai, M. Döring, Phys. Rev. D 98, 014507 (2018). https://doi.org/10.1103/PhysRevD.98.014507. arXiv:1803.02897 [hep-lat]

    Article  ADS  Google Scholar 

  113. D.J. Wilson, R.A. Briceno, J.J. Dudek, R.G. Edwards, C.E. Thomas, Phys. Rev. Lett. 123, 042002 (2019). https://doi.org/10.1103/PhysRevLett.123.042002. arXiv:1904.03188 [hep-lat]

    Article  ADS  Google Scholar 

  114. G. Rendon, L. Leskovec, S. Meinel, J. Negele, S. Paul, M. Petschlies, A. Pochinsky, G. Silvi, S. Syritsyn, (2020), arXiv:2006.14035 [hep-lat]

  115. Z. Zhou, G. Qin, P. Zhang, Z. Xiao, H. Zheng, N. Wu, JHEP 02, 043 (2005). https://doi.org/10.1088/1126-6708/2005/02/043. arXiv:hep-ph/0406271

    Article  ADS  Google Scholar 

  116. M. Albaladejo, J.A. Oller, Phys. Rev. D 86, 034003 (2012). https://doi.org/10.1103/PhysRevD.86.034003. arXiv:1205.6606 [hep-ph]

    Article  ADS  Google Scholar 

  117. T. Ledwig, J. Nieves, A. Pich, E Ruiz Arriola, J Ruiz de Elvira, Phys. Rev. D 90, 114020 (2014). https://doi.org/10.1103/PhysRevD.90.114020. arXiv:1407.3750 [hep-ph]

    Article  ADS  Google Scholar 

  118. L.-Y. Dai, X.-W. Kang, T. Luo, U.-G. Meißner, (2019), arXiv:1903.01685 [hep-ph]

  119. I. Danilkin, O. Deineka, M. Vanderhaeghen, (2020), arXiv:2012.11636 [hep-ph]

  120. F.-K. Guo, R.-G. Ping, P.-N. Shen, H.-C. Chiang, B.-S. Zou, Nucl. Phys. A 773, 78 (2006). https://doi.org/10.1016/j.nuclphysa.2006.04.008. arXiv:hep-ph/0509050

    Article  ADS  Google Scholar 

  121. J. Kennedy, T.D. Spearman, Phys. Rev. 126, 1596 (1962). https://doi.org/10.1103/PhysRev.126.1596

    Article  MathSciNet  ADS  Google Scholar 

  122. R.J. Eden, P.V. Landshoff, D.I. Olive, J.C. Polkinghorne, The Analytic\(S\)-Matrix (Cambridge University Press, Cambridge, 1966). https://cds.cern.ch/record/98637

  123. S.M. Roy, Phys. Lett. 36B, 353 (1971). https://doi.org/10.1016/0370-2693(71)90724-6

    Article  ADS  Google Scholar 

  124. G.E. Hite, F. Steiner, Nuovo Cim. A 18, 237 (1973). https://doi.org/10.1007/BF02722827

    Article  ADS  Google Scholar 

  125. N. Johannesson, G. Nilsson, Nuovo Cim. A 43, 376 (1978). https://doi.org/10.1007/BF02730436

    Article  ADS  Google Scholar 

  126. G. Mahoux, S.M. Roy, G. Wanders, Nucl. Phys. B 70, 297 (1974). https://doi.org/10.1016/0550-3213(74)90480-5

    Article  ADS  Google Scholar 

  127. G. Auberson, L. Epele, G. Mahoux, F. Simao, Nucl. Phys. B 73, 314 (1974). https://doi.org/10.1016/0550-3213(74)90022-4

    Article  ADS  Google Scholar 

  128. G. Auberson, L. Epele, G. Mahoux, F. Simao, Ann. Inst. H. Poincare Phys. Theor. 26, 107 (1977), [Erratum: Ann.Inst.H.Poincare Phys.Theor. 22, 317–366 (1975)]

  129. G. Auberson, L. Epele, G. Mahoux, F. Simao, Nucl. Phys. B 94, 311 (1975). https://doi.org/10.1016/0550-3213(75)90494-0

    Article  ADS  Google Scholar 

  130. S. Roy, G. Wanders, Nucl. Phys. B 141, 220 (1978). https://doi.org/10.1016/0550-3213(78)90507-2

    Article  ADS  Google Scholar 

  131. M. Froissart, Phys. Rev. 123, 1053 (1961). https://doi.org/10.1103/PhysRev.123.1053

    Article  ADS  Google Scholar 

  132. Y.-J. Shi, C.-Y. Seng, F.-K. Guo, B. Kubis, U.-G. Meißner, W. Wang, (2020), arXiv:2011.00921 [hep-ph]

  133. J.R. Pelaez, F.J. Yndurain, Phys. Rev. D 69, 114001 (2004). https://doi.org/10.1103/PhysRevD.69.114001. arXiv:hep-ph/0312187 [hep-ph]

    Article  ADS  Google Scholar 

  134. I. Caprini, G. Colangelo, H. Leutwyler, Eur. Phys. J. C 72, 1860 (2012). https://doi.org/10.1140/epjc/s10052-012-1860-1. arXiv:1111.7160 [hep-ph]

    Article  ADS  Google Scholar 

  135. G. Colangelo, J. Gasser, H. Leutwyler, Phys. Lett. B 488, 261 (2000). https://doi.org/10.1016/S0370-2693(00)00898-4. arXiv:hep-ph/0007112 [hep-ph]

    Article  ADS  Google Scholar 

  136. J.R. Pelaez, F.J. Yndurain, Phys. Rev. D 71, 074016 (2005). https://doi.org/10.1103/PhysRevD.71.074016. arXiv:hep-ph/0411334 [hep-ph]

    Article  ADS  Google Scholar 

  137. R. Kaminski, J.R. Pelaez, F.J. Yndurain, Phys. Rev. D 77, 054015 (2008). https://doi.org/10.1103/PhysRevD.77.054015. arXiv:0710.1150 [hep-ph]

    Article  ADS  Google Scholar 

  138. R. Kaminski, J.R. Pelaez, F.J. Yndurain, Phys. Rev. D 74, 014001 (2006). https://doi.org/10.1103/PhysRevD.74.014001, https://doi.org/10.1103/PhysRevD.74.079903arXiv:hep-ph/0603170 [hep-ph], [Erratum: Phys. Rev. D74,079903(2006)]

  139. J. R. Peláez, A. Rodas, in 17th International Conference on Hadron Spectroscopy and Structure (Hadron 2017) Salamanca, Spain, September 25-29, 2017, Vol. Hadron2017 (2018) p. 139, arXiv:1711.07861 [hep-ph]

  140. P. Masjuan, J.J. Sanz-Cillero, Eur. Phys. J. C 73, 2594 (2013). https://doi.org/10.1140/epjc/s10052-013-2594-4. arXiv:1306.6308 [hep-ph]

    Article  ADS  Google Scholar 

  141. P. Masjuan, J. Ruiz de Elvira, J.J. Sanz-Cillero, Phys. Rev. D 90, 097901 (2014). https://doi.org/10.1103/PhysRevD.90.097901. arXiv:1410.2397 [hep-ph]

    Article  ADS  Google Scholar 

  142. J.L. Basdevant, C.D. Froggatt, J.L. Petersen, Phys. Lett. 41B, 178 (1972a). https://doi.org/10.1016/0370-2693(72)90456-X

    Article  ADS  Google Scholar 

  143. J.L. Basdevant, C.D. Froggatt, J.L. Petersen, Phys. Lett. 41B, 173 (1972b). https://doi.org/10.1016/0370-2693(72)90455-8

    Article  ADS  Google Scholar 

  144. J.L. Basdevant, C.D. Froggatt, J.L. Petersen, Nucl. Phys. B 72, 413 (1974). https://doi.org/10.1016/0550-3213(74)90152-7

    Article  ADS  Google Scholar 

  145. M.R. Pennington, S.D. Protopopescu, Phys. Rev. D 7, 2591 (1973a). https://doi.org/10.1103/PhysRevD.7.2591

    Article  ADS  Google Scholar 

  146. M.R. Pennington, S.D. Protopopescu, Phys. Rev. D 7, 1429 (1973b). https://doi.org/10.1103/PhysRevD.7.1429

    Article  ADS  Google Scholar 

  147. R Navarro Pérez, E Ruiz Arriola, J Ruiz de Elvira, Phys. Rev. D 91, 074014 (2015). https://doi.org/10.1103/PhysRevD.91.074014, arXiv:1502.03361 [hep-ph]

  148. J. Pelaez, A. Rodas, J. Ruiz De Elvira, Eur. Phys. J. C 79, 1008 (2019). https://doi.org/10.1140/epjc/s10052-019-7509-6. arXiv:1907.13162 [hep-ph]

    Article  ADS  Google Scholar 

  149. J. Baacke, F. Steiner, Fortsch. Phys. 18, 67 (1970). https://doi.org/10.1002/prop.19700180104

    Article  ADS  Google Scholar 

  150. F. Steiner, Fortsch. Phys. 19, 115 (1971). https://doi.org/10.1002/prop.19710190302

    Article  ADS  Google Scholar 

  151. K.M. Watson, Phys. Rev. 88, 1163 (1952). https://doi.org/10.1103/PhysRev.88.1163

    Article  ADS  Google Scholar 

  152. N. Hedegaard-Jensen, Nucl. Phys. B 77, 173 (1974). https://doi.org/10.1016/0550-3213(74)90311-3

    Article  ADS  Google Scholar 

  153. N.O. Johannesson, J.L. Petersen, Nucl. Phys. B 68, 397 (1974). https://doi.org/10.1016/0550-3213(74)90320-4

    Article  ADS  Google Scholar 

  154. B. Bonnier, N. Johannesson, Nucl. Phys. B 101, 72 (1975). https://doi.org/10.1016/0550-3213(75)90294-1

    Article  ADS  Google Scholar 

  155. C. Ditsche, M. Hoferichter, B. Kubis, U. Meissner, JHEP 6, 43 (2012). https://doi.org/10.1007/JHEP06(2012)043. arXiv:1203.4758 [hep-ph]

  156. M. Hoferichter, C. Ditsche, B. Kubis, U.G. Meissner, JHEP 06, 063 (2012a). https://doi.org/10.1007/JHEP06(2012)063. arXiv:1204.6251 [hep-ph]

    Article  ADS  Google Scholar 

  157. M. Hoferichter, J. Ruiz de Elvira, B. Kubis, U.-G. Meißner, Phys. Rep. 625, 1 (2016). https://doi.org/10.1016/j.physrep.2016.02.002. arXiv:1510.06039 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  158. R. Garcia-Martin, B. Moussallam, Eur. Phys. J. C 70, 155 (2010). https://doi.org/10.1140/epjc/s10052-010-1471-7. arXiv:1006.5373 [hep-ph]

    Article  ADS  Google Scholar 

  159. M. Hoferichter, D.R. Phillips, C. Schat, Eur. Phys. J. C 71, 1743 (2011). https://doi.org/10.1140/epjc/s10052-011-1743-x. arXiv:1106.4147 [hep-ph]

    Article  ADS  Google Scholar 

  160. B. Moussallam, Eur. Phys. J. C 73, 2539 (2013). https://doi.org/10.1140/epjc/s10052-013-2539-y. arXiv:1305.3143 [hep-ph]

    Article  ADS  Google Scholar 

  161. I. Danilkin, M. Vanderhaeghen, Phys. Lett. B 789, 366 (2019). https://doi.org/10.1016/j.physletb.2018.12.047. arXiv:1810.03669 [hep-ph]

    Article  ADS  Google Scholar 

  162. M. Hoferichter, P. Stoffer, JHEP 07, 073 (2019). https://doi.org/10.1007/JHEP07(2019)073. arXiv:1905.13198 [hep-ph]

    Article  ADS  Google Scholar 

  163. G. Colangelo, M. Hoferichter, P. Stoffer, JHEP 02, 006 (2019). https://doi.org/10.1007/JHEP02(2019)006. arXiv:1810.00007 [hep-ph]

    Article  ADS  Google Scholar 

  164. M. Hoferichter, B. Kubis, D. Sakkas, Phys. Rev. D 86, 116009 (2012b). https://doi.org/10.1103/PhysRevD.86.116009. arXiv:1210.6793 [hep-ph]

    Article  ADS  Google Scholar 

  165. M. Hoferichter, B. Kubis, M. Zanke, Phys. Rev. D 96, 114016 (2017). https://doi.org/10.1103/PhysRevD.96.114016. arXiv:1710.00824 [hep-ph]

    Article  ADS  Google Scholar 

  166. M. Dax, D. Stamen, B. Kubis, (2020), arXiv:2012.04655 [hep-ph]

  167. J. Bijnens, G. Ecker, Ann. Rev. Nucl. Part. Sci. 64, 149 (2014). https://doi.org/10.1146/annurev-nucl-102313-025528. arXiv:1405.6488 [hep-ph]

    Article  ADS  Google Scholar 

  168. S. Aoki et al., Flavour Lattice Averaging Group. Eur. Phys. J. C 80, 113 (2020). https://doi.org/10.1140/epjc/s10052-019-7354-7. arXiv:1902.08191 [hep-lat]

    Article  ADS  Google Scholar 

  169. J. Oller, Symmetry 12, 1114 (2020). https://doi.org/10.3390/sym12071114. arXiv:2005.14417 [hep-ph]

    Article  Google Scholar 

  170. D.-L. Yao, L.-Y. Dai, H.-Q. Zheng, Z.-Y. Zhou, (2020), arXiv:2009.13495 [hep-ph]

  171. R. Roskies, Nuovo Cim. A 65, 467 (1970). https://doi.org/10.1007/BF02824912

    Article  ADS  Google Scholar 

  172. J. Nieves, M Pavon Valderrama, E Ruiz Arriola, Phys. Rev. D 65, 036002 (2002). https://doi.org/10.1103/PhysRevD.65.036002. arXiv:hep-ph/0109077

    Article  ADS  Google Scholar 

  173. D. Black, A.H. Fariborz, S. Moussa, S. Nasri, J. Schechter, Phys. Rev. D 64, 014031 (2001). https://doi.org/10.1103/PhysRevD.64.014031. arXiv:hep-ph/0012278

    Article  ADS  Google Scholar 

  174. J. Nebreda, J.R. Pelaez, Phys. Rev. D 81, 054035 (2010). https://doi.org/10.1103/PhysRevD.81.054035. arXiv:1001.5237 [hep-ph]

    Article  ADS  Google Scholar 

  175. T.N. Truong, Phys. Rev. Lett. 61, 2526 (1988). https://doi.org/10.1103/PhysRevLett.61.2526

    Article  ADS  Google Scholar 

  176. A. Dobado, M.J. Herrero, T.N. Truong, Phys. Lett. B 235, 134 (1990a). https://doi.org/10.1016/0370-2693(90)90109-J

    Article  ADS  Google Scholar 

  177. A. Dobado, J. Pelaez, Phys. Rev. D 47, 4883 (1993). https://doi.org/10.1103/PhysRevD.47.4883. arXiv:hep-ph/9301276

    Article  ADS  Google Scholar 

  178. A. Dobado, J. Pelaez, Phys. Rev. D 65, 077502 (2002). https://doi.org/10.1103/PhysRevD.65.077502. arXiv:hep-ph/0111140

    Article  ADS  Google Scholar 

  179. F. Guerrero, J.A. Oller, Nucl. Phys. B 537, 459 (1999). https://doi.org/10.1016/S0550-3213(98)00663-4, arXiv:hep-ph/9805334, [Erratum: Nucl. Phys. B 602, 641-643 (2001)]

  180. A Gomez Nicola, J. Pelaez, Phys. Rev. D 65, 054009 (2002). https://doi.org/10.1103/PhysRevD.65.054009. arXiv:hep-ph/0109056

    Article  ADS  Google Scholar 

  181. A. Dobado, A Gomez Nicola, F.J. Llanes-Estrada, J. Pelaez, Phys. Rev. C 66, 055201 (2002). https://doi.org/10.1103/PhysRevC.66.055201. arXiv:hep-ph/0206238

    Article  ADS  Google Scholar 

  182. A Gomez Nicola, J.R. Pelaez, J Ruiz de Elvira, Phys. Rev. D 82, 074012 (2010). https://doi.org/10.1103/PhysRevD.82.074012, arXiv:1005.4370 [hep-ph]

  183. A Gomez Nicola, J. Pelaez, J Ruiz de Elvira, Phys. Rev. D 87, 016001 (2013a). https://doi.org/10.1103/PhysRevD.87.016001. arXiv:1210.7977 [hep-ph]

    Article  ADS  Google Scholar 

  184. A Gomez Nicola, J Ruiz de Elvira, R Torres Andres, Phys. Rev. D 88, 076007 (2013b). https://doi.org/10.1103/PhysRevD.88.076007. arXiv:1304.3356 [hep-ph]

    Article  ADS  Google Scholar 

  185. A.G. Nicola, J. Ruiz de Elvira, A. Vioque-Rodríguez, D. Álvarez-Herrero, (2020), arXiv:2012.12279 [hep-ph]

  186. A Gomez Nicola, J. Pelaez, Phys. Rev. D 62, 017502 (2000). https://doi.org/10.1103/PhysRevD.62.017502. arXiv:hep-ph/9912512

    Article  ADS  Google Scholar 

  187. A. Dobado, M.J. Herrero, T.N. Truong, Phys. Lett. B 235, 129 (1990b). https://doi.org/10.1016/0370-2693(90)90108-I

    Article  ADS  Google Scholar 

  188. G.F. Chew, S. Mandelstam, Phys. Rev. 119, 467 (1960). https://doi.org/10.1103/PhysRev.119.467

    Article  MathSciNet  ADS  Google Scholar 

  189. J. Oller, E. Oset, J. Pelaez, Phys. Rev. D 62, 114017 (2000a). https://doi.org/10.1103/PhysRevD.62.114017. arXiv:hep-ph/9911297

    Article  ADS  Google Scholar 

  190. J. Nieves, E Ruiz Arriola, Phys. Lett. B 455, 30 (1999). https://doi.org/10.1016/S0370-2693(99)00461-X. arXiv:nucl-th/9807035

    Article  ADS  Google Scholar 

  191. J. Nieves, E Ruiz Arriola, Nucl. Phys. A 679, 57 (2000). https://doi.org/10.1016/S0375-9474(00)00321-3. arXiv:hep-ph/9907469 [hep-ph]

    Article  ADS  Google Scholar 

  192. M. Albaladejo, J. Oller, Phys. Rev. Lett. 101, 252002 (2008). https://doi.org/10.1103/PhysRevLett.101.252002. arXiv:0801.4929 [hep-ph]

    Article  ADS  Google Scholar 

  193. J. Oller, E. Oset, A. Ramos, Prog. Part. Nucl. Phys. 45, 157 (2000b). https://doi.org/10.1016/S0146-6410(00)00104-6. arXiv:hep-ph/0002193

    Article  ADS  Google Scholar 

  194. A Gomez Nicola, J. Pelaez, G. Rios, Phys. Rev. D 77, 056006 (2008). https://doi.org/10.1103/PhysRevD.77.056006. arXiv:0712.2763 [hep-ph]

    Article  ADS  Google Scholar 

  195. R. Molina, J. Ruiz de Elvira, JHEP 11, 017 (2020). https://doi.org/10.1007/JHEP11(2020)017. arXiv:2005.13584 [hep-lat]

    Article  ADS  Google Scholar 

  196. M. Niehus, M. Hoferichter, B. Kubis, J. Ruiz de Elvira, (2020), arXiv:2009.04479 [hep-ph]

  197. A. Salas-Bernárdez, F.J. Llanes-Estrada, J. Escudero-Pedrosa, J.A. Oller, (2020), arXiv:2010.13709 [hep-ph]

  198. J Ruiz de Elvira, E Ruiz Arriola, Eur. Phys. J. C 78, 878 (2018). https://doi.org/10.1140/epjc/s10052-018-6342-7. arXiv:1807.10837 [hep-ph]

    Article  ADS  Google Scholar 

  199. C. Hanhart, J.R. Peláez, G. Ríos, Phys. Lett. B 739, 375 (2014). https://doi.org/10.1016/j.physletb.2014.11.011. arXiv:1407.7452 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  200. J. Ruiz de Elvira, U.G. Meißner, A. Rusetsky, G. Schierholz, Eur. Phys. J. C 77, 659 (2017). https://doi.org/10.1140/epjc/s10052-017-5237-3. arXiv:1706.09015 [hep-lat]

    Article  ADS  Google Scholar 

  201. C. Hanhart, J.R. Pelaez, G. Rios, Phys. Rev. Lett. 100, 152001 (2008). https://doi.org/10.1103/PhysRevLett.100.152001. arXiv:0801.2871 [hep-ph]

    Article  ADS  Google Scholar 

  202. J. Nebreda, J. Pelaez, G. Rios, Phys. Rev. D 83, 094011 (2011b). https://doi.org/10.1103/PhysRevD.83.094011. arXiv:1101.2171 [hep-ph]

    Article  ADS  Google Scholar 

  203. J. Pelaez, G. Rios, Phys. Rev. D 82, 114002 (2010). https://doi.org/10.1103/PhysRevD.82.114002. arXiv:1010.6008 [hep-ph]

    Article  ADS  Google Scholar 

  204. J.R. Pelaez, C. Hanhart, J. Nebreda, G. Rios, AIP Conf. Proc. 1257, 141 (2010). https://doi.org/10.1063/1.3483311. arXiv:1003.0364 [hep-ph]

    Article  ADS  Google Scholar 

  205. T. Kunihiro, S. Muroya, A. Nakamura, C. Nonaka, M. Sekiguchi (SCALAR), H. Wada, Phys. Rev. D 70, 034504 (2004). https://doi.org/10.1103/PhysRevD.70.034504, arXiv:hep-ph/0310312

  206. M. Wakayama, T. Kunihiro, S. Muroya, A. Nakamura, C. Nonaka, M. Sekiguchi, H. Wada, Phys. Rev. D 91, 094508 (2015). https://doi.org/10.1103/PhysRevD.91.094508. arXiv:1412.3909 [hep-lat]

    Article  ADS  Google Scholar 

  207. S. Prelovsek, T. Draper, C.B. Lang, M. Limmer, K.-F. Liu, N. Mathur, D. Mohler, Phys. Rev. D 82, 094507 (2010). https://doi.org/10.1103/PhysRevD.82.094507. arXiv:1005.0948 [hep-lat]

    Article  ADS  Google Scholar 

  208. J.J. Dudek, R.G. Edwards, C.E. Thomas, D.J. Wilson (Hadron Spectrum), Phys. Rev. Lett. 113, 182001 (2014). https://doi.org/10.1103/PhysRevLett.113.182001, arXiv:1406.4158 [hep-ph]

  209. R. Brett, J. Bulava, J. Fallica, A. Hanlon, B. Hörz, C. Morningstar, Nucl. Phys. B 932, 29 (2018). https://doi.org/10.1016/j.nuclphysb.2018.05.008. arXiv:1802.03100 [hep-lat]

  210. J.A. Oller, Nucl. Phys. A 727, 353 (2003). https://doi.org/10.1016/j.nuclphysa.2003.08.002. arXiv:hep-ph/0306031

    Article  ADS  Google Scholar 

  211. M. Knecht, S. Peris, Phys. Rev. D 88, 036016 (2013). https://doi.org/10.1103/PhysRevD.88.036016. arXiv:1307.1273 [hep-ph]

    Article  ADS  Google Scholar 

  212. W. Lucha, D. Melikhov, H. Sazdjian, (2021), arXiv:2102.02542 [hep-ph]

  213. S. Peris, E. de Rafael, Phys. Lett. B 348, 539 (1995). https://doi.org/10.1016/0370-2693(95)00160-M. arXiv:hep-ph/9412343

    Article  ADS  Google Scholar 

  214. A Calle Cordon, E Ruiz Arriola, Phys. Rev. C 80, 014002 (2009). https://doi.org/10.1103/PhysRevC.80.014002. arXiv:0904.0421 [nucl-th]

    Article  ADS  Google Scholar 

  215. E. van Beveren, D. Bugg, F. Kleefeld, G. Rupp, Phys. Lett. B 641, 265 (2006). https://doi.org/10.1016/j.physletb.2006.08.051. arXiv:hep-ph/0606022

    Article  ADS  Google Scholar 

  216. F. Giacosa, Phys. Rev. D 75, 054007 (2007). https://doi.org/10.1103/PhysRevD.75.054007. arXiv:hep-ph/0611388

    Article  ADS  Google Scholar 

  217. J. Nieves, E Ruiz Arriola, Phys. Rev. D 80, 045023 (2009). https://doi.org/10.1103/PhysRevD.80.045023. arXiv:0904.4344 [hep-ph]

    Article  ADS  Google Scholar 

  218. J. Nieves, A. Pich, E Ruiz Arriola, Phys. Rev. D 84, 096002 (2011). https://doi.org/10.1103/PhysRevD.84.096002. arXiv:1107.3247 [hep-ph]

    Article  ADS  Google Scholar 

  219. T. Wolkanowski, M. Sołtysiak, F. Giacosa, Nucl. Phys. B 909, 418 (2016). https://doi.org/10.1016/j.nuclphysb.2016.05.025. arXiv:1512.01071 [hep-ph]

  220. E. Oset, H. Toki, M. Mizobe, T.T. Takahashi, Prog. Theor. Phys. 103, 351 (2000). https://doi.org/10.1143/PTP.103.351. arXiv:nucl-th/0011008

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge J.A. Oller for encouraging us to write a tutorial review on this topic. We thank I. Danilkin for his corrections on the manuscript. This project has received funding from the Spanish Ministerio de Ciencia e Innovación grant PID2019-106080GB-C21 and the European Union’s Horizon 2020 research and innovation program under grant agreement No 824093 (STRONG2020). AR acknowledges the financial support of the U.S. Department of Energy contract DE-SC0018416 at William & Mary, and contract DE-AC05-06OR23177, under which Jefferson Science Associates, LLC, manages and operates Jefferson Lab. JRE acknowledges financial support from the Swiss National Science Foundation under Project No. PZ00P2 174228.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José R. Peláez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peláez, J.R., Rodas, A. & Ruiz de Elvira, J. Precision dispersive approaches versus unitarized chiral perturbation theory for the lightest scalar resonances \(\sigma /f_0(500) \) and \(\kappa /K_0^*(700) \). Eur. Phys. J. Spec. Top. 230, 1539–1574 (2021). https://doi.org/10.1140/epjs/s11734-021-00142-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00142-9

Navigation