Skip to main content
Log in

Renormalons in static QCD potential: review and some updates

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We give a brief review of the current understanding of renormalons of the static QCD potential in coordinate and momentum spaces. We also reconsider estimate of the normalization constant of the \(u=3/2\) renormalon and propose a new way to improve the estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. If we denote the UV contribution to \(\delta E_\mathrm{US}\) which cancels the IR renormalon by \(\delta E_\mathrm{US}|_{\text {UV contr.}}=V_A^2(r;\mu ) r^2 \mathcal {O}(\mu )\), it should be \(\mu \) independent. To obtain Eq. (5), we use the fact that \(\mathrm{Im} \, V_S(r)_{\pm }|_{u_*=3/2} \propto V_A^2(r;\mu ) r^2 \mathcal {O}(\mu ) =V_A^2(r;\mu _0) r^2 \mathcal {O}(\mu _0)\) and then use Eq. (6). Note that \(\exp [-2 \int _{\alpha _s(\mu _0)}^0 \mathrm{d}x \, \gamma (x)/\beta (x)] \mathcal {O}(\mu _0)\) is \(\mu _0\) independent.

  2. In Ref. [14], we mentioned that \(\gamma _1\) is not known, but according to Ref. [15], it is known to be zero. Here we use it and the correction factor in Eq. (5) now becomes \(1+\mathcal {O}(\alpha ^2_s)\) although in Ref. [14] it was \(1+\mathcal {O}(\alpha _s)\).

  3. If the minimal sensitivity scale is not found in the range \(1/2< \mu r <5\), we treat \(\mu r=1\) as the minimal sensitivity scale.

  4. The final error is estimated in this way in Ref. [15] and we follow it.

  5. Rigorously speaking, \({d_n^f}^{u_* \mathrm{(asym)}} \propto (\mu ^2 r^2)^{u_*}\) does not exactly hold in general cases because \(c_{k, u_*}\) is a polynomial of \(\log (\mu ^2 r^2)\). When a renormalon uncertainty is exactly proportional to \(\varLambda _{\overline{\mathrm{MS}}}^{2 u_*}\), \(c_{k, u_*}\) does not have \(\log (\mu ^2 r^2)\) dependence and \(d_n^{u_* \mathrm{(asym)}} \propto (\mu ^2 r^2)^{u_*}\) is exact.

  6. In Scheme A, we assume dimensional regularization in calculating the three-loop coefficient. Then we drop the divergent term \(1/\epsilon \) (associated with the IR divergence) and set the renormalization scale to 1/r. (Both of the soft and ultra-soft renormalization scales are set to 1/r.)

References

  1. T. Appelquist, M. Dine, I.J. Muzinich, The static potential in quantum chromodynamics. Phys. Lett. 69B, 231–236 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  2. W. Fischler, Quark–anti-quark potential in QCD. Nucl. Phys. B 129, 157–174 (1977)

    Article  ADS  Google Scholar 

  3. M. Peter, The static quark–anti-quark potential in QCD to three loops. Phys. Rev. Lett. 78, 602–605 (1997). arXiv:hep-ph/9610209

    Article  ADS  Google Scholar 

  4. M. Peter, The static potential in QCD: a full two loop calculation. Nucl. Phys. B 501, 471–494 (1997). arXiv:hep-ph/9702245

    Article  ADS  Google Scholar 

  5. Y. Schroder, The static potential in QCD to two loops. Phys. Lett. B 447, 321–326 (1999). arXiv:hep-ph/9812205

    Article  ADS  Google Scholar 

  6. A.V. Smirnov, V.A. Smirnov, M. Steinhauser, Fermionic contributions to the three-loop static potential. Phys. Lett. B 668, 293–298 (2008). arXiv:0809.1927 [hep-ph]

    Article  ADS  Google Scholar 

  7. C. Anzai, Y. Kiyo, Y. Sumino, Static QCD potential at three-loop order. Phys. Rev. Lett. 104, 112003 (2010). arXiv:0911.4335 [hep-ph]

    Article  ADS  Google Scholar 

  8. A.V. Smirnov, V.A. Smirnov, M. Steinhauser, Three-loop static potential. Phys. Rev. Lett. 104, 112002 (2010). arXiv:0911.4742 [hep-ph]

    Article  ADS  Google Scholar 

  9. R.N. Lee, A.V. Smirnov, V.A. Smirnov, M. Steinhauser, Analytic three-loop static potential. Phys. Rev. D 94(5), 054029 (2016). arXiv:1608.02603 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  10. T. Lee, Surviving the renormalon in heavy quark potential. Phys. Rev. D 67, 014020 (2003). arXiv:hep-ph/0210032

    Article  ADS  Google Scholar 

  11. T. Lee, Heavy quark mass determination from the quarkonium ground state energy: a pole mass approach. JHEP 10, 044 (2003). arXiv:hep-ph/0304185

    ADS  Google Scholar 

  12. C. Ayala, X. Lobregat, A. Pineda, Superasymptotic and hyperasymptotic approximation to the operator product expansion. Phys. Rev. D 99(7), 074019 (2019). arXiv:1902.07736 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  13. H. Takaura, Formulation for renormalon-free perturbative predictions beyond large-\(\beta _0\) approximation. JHEP 10, 039 (2020). arXiv:2002.00428 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  14. Y. Sumino, H. Takaura, On renormalons of static QCD potential at \(u=1/2\) and \(3/2\). JHEP 05, 116 (2020). arXiv:2001.00770 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  15. C. Ayala, X. Lobregat, A. Pineda, Determination of \(\alpha (M_z)\) from an hyperasymptotic approximation to the energy of a static quark-antiquark pair. JHEP 09, 016 (2020). arXiv:2005.12301 [hep-ph]

    Article  ADS  Google Scholar 

  16. U. Aglietti, Z. Ligeti, Renormalons and confinement. Phys. Lett. B 364, 75 (1995). arXiv:hep-ph/9503209

    Article  ADS  Google Scholar 

  17. A. Pineda, Heavy quarkonium and nonrelativistic effective field theories. Ph.D. thesis (1998)

  18. A.H. Hoang, M.C. Smith, T. Stelzer, S. Willenbrock, Quarkonia and the pole mass. Phys. Rev. D 59, 114014 (1999). arXiv:hep-ph/9804227

    Article  ADS  Google Scholar 

  19. M. Beneke, A quark mass definition adequate for threshold problems. Phys. Lett. B 434, 115–125 (1998). arXiv:hep-ph/9804241

    Article  ADS  Google Scholar 

  20. Y. Sumino, Understanding interquark force and quark masses in perturbative QCD (2014). arXiv:1411.7853 [hep-ph]

  21. N. Brambilla, A. Pineda, J. Soto, A. Vairo, Potential NRQCD: an effective theory for heavy quarkonium. Nucl. Phys. B 566, 275 (2000). arXiv:hep-ph/9907240 [hep-ph]

    Article  ADS  Google Scholar 

  22. T. Lee, Renormalons beyond one loop. Phys. Rev. D 56, 1091–1100 (1997). arXiv:hep-th/9611010

  23. G.S. Bali, C. Bauer, A. Pineda, C. Torrero, Perturbative expansion of the energy of static sources at large orders in four-dimensional SU(3) gauge theory. Phys. Rev. D 87, 094517 (2013). arXiv:1303.3279 [hep-lat]

    Article  ADS  Google Scholar 

  24. C. Ayala, G. Cvetič, A. Pineda, The bottom quark mass from the \( \varvec {\Upsilon } (1S) \) system at NNNLO. JHEP 09, 045 (2014). arXiv:1407.2128 [hep-ph]

  25. Y. Sumino, Static QCD potential at \(r < {{\rm QCD}}^{-1}\): perturbative expansion and operator-product expansion. Phys. Rev. D 76, 114009 (2007). arXiv:hep-ph/0505034

  26. T. Appelquist, M. Dine, I. Muzinich, The static limit of quantum chromodynamics. Phys. Rev. D 17, 2074 (1978)

    Article  ADS  Google Scholar 

  27. N. Brambilla, A. Pineda, J. Soto, A. Vairo, The infrared behavior of the static potential in perturbative QCD. Phys. Rev. D 60, 091502 (1999). arXiv:hep-ph/9903355

    Article  ADS  Google Scholar 

  28. B.A. Kniehl, A.A. Penin, Ultrasoft effects in heavy quarkonium physics. Nucl. Phys. B 563, 200–210 (1999). arXiv:hep-ph/9907489

    Article  ADS  Google Scholar 

  29. Y. Hayashi, Y. Sumino, H. Takaura, New method for renormalon subtraction using Fourier transform. arXiv:2012.15670 [hep-ph]

Download references

Acknowledgements

The author is grateful to Yukinari Sumino as this work is largely based on Ref. [14], which is done in collaboration with him. This work was supported by JSPS Grant-in-Aid for Scientific Research Grant Number JP19K14711.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromasa Takaura.

Appendix A: Notation and basic relations

Appendix A: Notation and basic relations

In this appendix we summarize basic knowledge on renormalon and clarify the notation used in this paper. The beta function is given by

$$\begin{aligned} \mu ^2 \frac{\mathrm{d} \alpha _s(\mu )}{\mathrm{d} \mu ^2}=\beta (\alpha _s) =-b_0 \alpha _s^2-b_1 \alpha _s^3-\cdots . \end{aligned}$$
(24)

The QCD dynamical scale in the \(\overline{\mathrm{MS}}\) scheme is defined by

$$\begin{aligned} \varLambda _{\overline{\mathrm{MS}}}^2/\mu ^2= & {} \exp \left[ -\left( \frac{1}{b_0 \alpha _s^2(\mu )}+\frac{b_1}{b_0^2} \log (b_0 \alpha _s(\mu ))\right. \right. \nonumber \\&\left. \left. +\int _0^{\alpha _s(\mu )} \mathrm{d}x \, \left( \frac{1}{\beta (x)}+\frac{1}{b_0 x^2}-\frac{b_1}{b_0^2 x} \right) \right) \right] .\nonumber \\ \end{aligned}$$
(25)

We denote the dimensionless static QCD potential by v(r),

$$\begin{aligned} v(r)=r V_{S}(r)=\sum _{n=0}^{\infty } d^v_n (\mu r) \alpha _s^{n+1}(\mu ) , \end{aligned}$$
(26)

and the dimensionless QCD force by f(r),

$$\begin{aligned} f(r)=r^2 \frac{\mathrm{d} V_{S}}{\mathrm{d} r}=2 \frac{\mathrm{d} v}{\mathrm{d} L}-v=\sum _{n=0}^{\infty } d_n^f (\mu r) \alpha _s^{n+1}(\mu ) , \end{aligned}$$
(27)

where \(L=\log (\mu ^2 r^2)\). We define the Borel transform of such a perturbative series by

$$\begin{aligned} B_X(t) :=\sum _{n=0}^{\infty } \frac{d^X_n(\mu r)}{n!} t^n , \end{aligned}$$
(28)

where X is v(r) or f(r) (or momentum-space potential \(\alpha _V(q)\)). Around the singularity at \(t=u_*/b_0>0\), it behaves as

$$\begin{aligned} B_X(t)= & {} (\mu ^2 r^2)^{u_*} \frac{N_{u_*}}{(1-b_0 t /u_*)^{1+\nu _{u_*}}} \nonumber \\&\times \sum _{k=0}^{\infty } c_{k, u_*}(\mu r) \left( 1-\frac{b_0 t}{u_*} \right) ^k +\cdots , \quad {} (c_0=1),\nonumber \\ \end{aligned}$$
(29)

where \(N_{u_*}\), \(\nu _{u_*}\), and \(c_{k, u_*}\) are parameters, and \(\cdots \) denotes a regular function at \(t=u_*/b_0\). The asymptotic behavior of the perturbative coefficient due to the first IR renormalon \(t=u_*/b_0\) follows from the above singular Borel transform as

$$\begin{aligned}&d_n^{u_* (\mathrm{asym})}=N_{u_*} (\mu ^2 r^2)^{u_*} \frac{\varGamma (n+1+\nu _{u_*})}{\varGamma (1+\nu _{u_*})} \left( \frac{b_0}{u_*} \right) ^n \nonumber \\&\quad \times \sum _{k=0}^{\infty } c_{k, u_*}(\mu r) \frac{\nu _{u_*} (\nu _{u_*}-1) \cdots (\nu _{u_*}-k+1)}{(n+\nu _{u_*})(n+\nu _{u_*}-1)\cdots (n+\nu _{u_*}-k+1)}. \end{aligned}$$
(30)

The renormalon uncertainty of X is defined by the imaginary part of a regularized Borel integral:

$$\begin{aligned} \mathrm{Im} X_{\pm }&=\mathrm{Im} \int _{0\pm i0}^{\infty \pm i0} \mathrm{d}t \, B_X(t) e^{-t/\alpha _s(\mu )} \nonumber \\&=\pm \frac{\pi }{b_0} \frac{(\mu ^2 r^2)^{u_*} N_{u_*}}{\varGamma (1+\nu _{u_*})} u_*^{1+\nu _{u_*}} e^{-\frac{u_*}{b_0 \alpha _s(\mu )}} (b_0 \alpha _s(\mu ))^{-\nu _{u_*}}\nonumber \\&\quad \times \sum _k \nu _{u_*} (\nu _{u_*}-1) \cdot \cdots \cdot (\nu _{u_*}-k+1) \nonumber \\&\quad \times \left( b_0/u_* \right) ^{k} c_{k, u_*}(\mu r) \alpha _s^k(\mu ) . \end{aligned}$$
(31)

This is renormalization scale independent. Writing the renormalon uncertainty as

$$\begin{aligned} \mathrm{Im} \, X_{\pm }&=\pm K_{u_*} e^{-u_*/(b_0 \alpha _s(r^{-1}))} (b_0 \alpha _s(r^{-1}))^{-\nu _{u_*}} \nonumber \\&\quad \sum _{k=0}^{\infty } s_{k, u_*} \alpha _s^k(r^{-1}) \end{aligned}$$
(32)

with \(s_0=1\), we have the following relations,

$$\begin{aligned} K_{u_*}=\frac{\pi }{b_0} \frac{N_{u_*} }{\varGamma (1+\nu )} u_*^{1+\nu _{u_*}}, \end{aligned}$$
(33)

and

$$\begin{aligned} s_{k, u_*}= & {} \nu _{u_*} (\nu _{u_*}-1) \cdot \cdots \cdot (\nu _{u_*}-k+1)\nonumber \\&\times (b_0/u_*)^k c_k(\mu r=1) \quad \mathrm{for}\quad {} k\ge 1 . \end{aligned}$$
(34)

As discussed in Sect. 2, since the renormalon uncertainties in coordinate space are given by

$$\begin{aligned} K_{u_*} (\varLambda _{\overline{\mathrm{MS}}}^2 r^2)^{u_*} [1+\mathcal {O}(\alpha _s^2(r^{-1}))] , \end{aligned}$$
(35)

(where \(\mathcal {O}(\alpha _s^2)\) can be zero) one can see that \(\nu _{u_*}\) in Eq. (32) is given by

$$\begin{aligned} \nu _{u_*}=u_* b_1/b_0^2 \end{aligned}$$
(36)

for \(u_*=1/2\) or 3/2 (where Eq. (25) is used). One can also calculate \(s_{k, u_*}\) and thus \(c_{k, u_*}\) by expanding Eq. (2) or (5) in \(\alpha _s\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takaura, H. Renormalons in static QCD potential: review and some updates. Eur. Phys. J. Spec. Top. 230, 2593–2600 (2021). https://doi.org/10.1140/epjs/s11734-021-00253-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00253-3

Navigation