Skip to main content
Log in

Electro-oxidation of p-silicon in fluoride-containing electrolyte: a physical model for the regime of negative differential resistance

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

When Si is anodically oxidized in a fluoride containing electrolyte, an oxide layer is grown. Simultaneously, the layer is etched by the fluoride containing electrolyte. The resulting stationary state exhibits a negative slope of the current–voltage characteristics in a certain range of applied voltage. We propose a physical model that reproduces this negative slope. In particular, our model assumes that the oxide layer consists of both partially and fully oxidized Si and that the etch rate depends on the effective degree of oxidation. Finally, we show that our simulations are in good agreement with measurements of the current–voltage characteristics, the oxide layer thickness, the dissolution valence, and the impedance spectra of the electrochemical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.N. Chazalviel, Electrochim. Acta 37, 865 (1992)

    Article  Google Scholar 

  2. H. Lewerenz, M. Aggour, J. Electroanal. Chem. 351, 159 (1993)

    Article  Google Scholar 

  3. V. Lehmann, J. Electrochem. Soc. 143, 1313 (1996)

    Article  Google Scholar 

  4. H. Föll, M. Leisner, A. Cojocaru, J. Carstensen, Electrochim. Acta 55, 327 (2009)

    Article  Google Scholar 

  5. K. Schönleber, K. Krischer, ChemPhysChem 13, 2989 (2012)

    Article  Google Scholar 

  6. I. Miethe, V. García-Morales, K. Krischer, Phys. Rev. Lett. 102, 194101 (2009)

    Article  ADS  Google Scholar 

  7. I. Miethe, K. Krischer, J. Electroanal. Chem. 666, 1 (2012)

    Article  Google Scholar 

  8. J. Proost, F. Blaffart, S. Turner, H. Idrissi, ChemPhysChem 15, 3116 (2014)

    Article  Google Scholar 

  9. X.G. Zhang, Electrochemistry of silicon and its oxide (Springer, NY, 2001)

  10. D.M. Abrams, S.H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004)

    Article  ADS  Google Scholar 

  11. L. Schmidt, K. Schönleber, K. Krischer, V. García-Morales, Chaos 24, 013102 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  12. K. Schönleber, C. Zensen, A. Heinrich, K. Krischer, New J. Phys. 16, 063024 (2014)

    Article  ADS  Google Scholar 

  13. L. Schmidt, K. Krischer, Chaos 25, 064401 (2015)

    Article  ADS  Google Scholar 

  14. M. Patzauer, R. Hueck, A. Tosolini, K. Schönleber, K. Krischer, Electrochim. Acta 246, 315 (2017)

    Article  Google Scholar 

  15. K. Schönleber, M. Patzauer, K. Krischer, Electrochim. Acta 210, 346 (2016)

    Article  Google Scholar 

  16. C. Zensen, K. Schönleber, F. Kemeth, K. Krischer, J. Phys. Chem. C 118, 24407 (2014)

    Article  Google Scholar 

  17. J.N. Chazalviel, F. Ozanam, J. Electrochem. Soc. 139, 2501 (1992)

    Article  Google Scholar 

  18. A. Uhlir, Bell Labs Techn. J. 35, 333 (1956)

    Article  Google Scholar 

  19. K. Osseo-Asare, D. Wei, K.K. Mishra, J. Electrochem. Soc. 143, 749 (1996)

    Article  Google Scholar 

  20. J.N. Chazalviel, M. Etman, F. Ozanam, J. Electroanal. Chem. Interfacial Electrochem. 297, 533 (1991)

    Article  Google Scholar 

  21. M. Eddowes, J. Electroanal. Chem. Interfacial Electrochem. 280, 297 (1990)

    Article  Google Scholar 

  22. D. Blackwood, A. Borazio, R. Greef, L. Peter, J. Stumper, Electrochim. Acta 37, 889 (1992)

    Article  Google Scholar 

  23. R. Cheggou, A. Kadoun, N. Gabouze, F. Ozanam, J.N. Chazalviel, Electrochim. Acta 54, 3053 (2009)

    Article  Google Scholar 

  24. R. Memming, G. Schwandt, Surf. Sci. 4, 109 (1966)

    Article  ADS  Google Scholar 

  25. S. Cattarin, I. Frateur, M. Musiani, B. Tribollet, J. Electrochem. Soc. 147, 3277 (2000)

    Article  Google Scholar 

  26. A. Battistel, G. Du, F. La Mantia, Electroanalysis 28, 2346 (2016)

    Article  Google Scholar 

  27. D. Koster, G. Du, A. Battistel, F. La Mantia, Electrochim. Acta 246, 553 (2017)

    Article  Google Scholar 

  28. D. Koster, M. Patzauer, M.M. Salman, A. Battistel, K. Krischer, F. La Mantia, ChemElectroChem 5, 1548 (2018)

    Article  Google Scholar 

  29. A. Comsol, Comsol reference manual (version 5.2 a), Version September, 2016, pp. 1–1378

  30. Y.P. Lin, J.G. Hwu, J. Vac. Sci. Technol. A, Vac. Surf. Films 22, 2265 (2004)

    Article  ADS  Google Scholar 

  31. H. Hasegawa, S. Arimoto, J. Nanjo, H. Yamamoto, H. Ohno, J. Electrochem. Soc. 135, 424 (1988)

    Article  Google Scholar 

  32. S.M. Sze, K.K. Ng, Physics of semiconductor devices (John Wiley & Sons, NJ, 2006)

  33. MATLAB, Version 9.3.0 (R2017b) (The MathWorks Inc., Natick, Massachusetts, 2017)

  34. F. Ozanam, J.N. Chazalviel, A. Radi, M. Etman, J. Electrochem. Soc. 139, 2491 (1992)

    Article  Google Scholar 

  35. M.T.M. Koper, Far-from-equilibrium phenomena in electrochemical systems: instabilities, oscillations and chaos (Universiteit Utrecht, Faculteit Scheikunde, 1994)

  36. D.R. Turner, J. Electrochem. Soc. 105, 402 (1958)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munir M. Salman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salman, M.M., Patzauer, M., Koster, D. et al. Electro-oxidation of p-silicon in fluoride-containing electrolyte: a physical model for the regime of negative differential resistance. Eur. Phys. J. Spec. Top. 227, 2641–2658 (2019). https://doi.org/10.1140/epjst/e2019-800118-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-800118-x

Navigation