Skip to main content
Log in

Parameter-free predictions for the collective deformation variables β and γ within the pseudo-SU(3) scheme

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The consequences of the short-range nature of the nucleon–nucleon interaction, which forces the spatial part of the nuclear wave function to be as symmetric as possible, on the pseudo-SU(3) scheme are examined through a study of the collective deformation parameters β and γ in the rare earth region. It turns out that beyond the middle of each harmonic oscillator shell possessing an SU(3) subalgebra, the highest weight irreducible representation (the hw irrep) of SU(3) has to be used, instead of the irrep with the highest eigenvalue of the second order Casimir operator of SU(3) (the hC irrep), while in the first half of each shell the two choices are identical. The choice of the hw irrep predicts a transition from prolate to oblate shapes just below the upper end of the rare earth region, between the neutron numbers N = 114 and 116 in the W, Os, and Pt series of isotopes, in agreement with available experimental information, while the choice of the hC irrep leads to a prolate to oblate transition in the middle of the shell, which is not seen experimentally. The prolate over oblate dominance in the ground states of even–even nuclei is obtained as a by-product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Iachello, A. Arima,The interacting Boson model (Cambridge University Press, Cambridge, 1987)

  2. F. Iachello, P. Van Isacker,The interacting Boson–Fermion model (Cambridge University Press, Cambridge, 1991)

  3. A. Frank, P. Van Isacker,Symmetry methods in molecules and nuclei (S y G editores, México D.F., 2005)

  4. G. Rosensteel, D.J. Rowe, Ann. Phys. (NY) 126, 343 (1980)

    Article  ADS  Google Scholar 

  5. D.J. Rowe, J.L. Wood,Fundamentals of nuclear models: foundational models (World Scientific, Singapore, 2010)

  6. V.K.B. Kota,SU(3) symmetry in atomic nuclei (Springer, Singapore, 2020)

  7. P. Ring, P. Schuck,The nuclear many-body problem (Springer, Berlin, 1980)

  8. R.F. Casten,Nuclear Structure from a Simple Perspective (Oxford University Press, Oxford, 2000)

  9. P. Van Isacker, D.D. Warner, D.S. Brenner, Phys. Rev. Lett. 74, 4607 (1995)

    Article  ADS  Google Scholar 

  10. B.G. Wybourne,Classical groups for physicists (Wiley, New York, 1974)

  11. V.K.B. Kota, R. Sahu,Structure of medium mass nuclei (CRC Press, Taylor and Francis Group, Boca Raton, 2017)

  12. D. Bonatsos, I.E. Assimakis, N. Minkov, A. Martinou, R.B. Cakirli, R.F. Casten, K. Blaum, Phys. Rev. C 95, 064326 (2017)

    Article  ADS  Google Scholar 

  13. D. Bonatsos, I.E. Assimakis, N. Minkov, A. Martinou, S. Sarantopoulou, R.B. Cakirli, K. Blaum, Phys. Rev. C 95, 064326 (2017)

    Article  ADS  Google Scholar 

  14. M. Moshinsky, Yu. F. Smirnov,The harmonic oscillator in modern physics (Harwood, Amsterdam, 1996)

  15. J.P. Elliott, Proc. Roy. Soc. Ser. A 245, 128 (1958)

    ADS  Google Scholar 

  16. J.P. Elliott, Proc. Roy. Soc. Ser. A 245, 562 (1958)

    ADS  Google Scholar 

  17. J.P. Elliott, M. Harvey, Proc. Roy. Soc. Ser. A 272, 557 (1963)

    ADS  Google Scholar 

  18. M.G. Mayer, J.H.D. Jensen,Elementary theory of nuclear shell structure (Wiley, New York, 1955)

  19. S.G. Nilsson, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 29, 16 (1955)

    Google Scholar 

  20. S.G. Nilsson, I. Ragnarsson,Shapes and shells in nuclear structure (Cambridge University Press, Cambridge, 1995)

  21. D. Bonatsos, S. Karampagia, R.B. Cakirli, R.F. Casten, K. Blaum, L. Amon Susam, Phys. Rev. C 88, 054309 (2013)

    Article  ADS  Google Scholar 

  22. P. Federman, S. Pittel, Phys. Lett. B 69, 385 (1977)

    Article  ADS  Google Scholar 

  23. P. Federman, S. Pittel, Phys. Lett. B 77, 29 (1978)

    Article  ADS  Google Scholar 

  24. P. Federman, S. Pittel, Phys. Rev. C 20, 820 (1979)

    Article  ADS  Google Scholar 

  25. R.B. Cakirli, R.F. Casten, Phys. Rev. Lett. 96, 132501 (2006)

    Article  ADS  Google Scholar 

  26. R.B. Cakirli, K. Blaum, R.F. Casten, Phys. Rev. C 82, 061304(R) (2010)

    Article  ADS  Google Scholar 

  27. D. Bonatsos, R.F. Casten, A. Martinou, I.E. Assimakis, N. Minkov, S. Sarantopoulou, R.B. Cakirli, K. Blaum, arXiv:1712.04126 [nucl-th]

  28. J.P. Draayer, Y. Leschber, S.C. Park, R. Lopez, Comput. Phys. Commun. 56, 279 (1989)

    Article  ADS  Google Scholar 

  29. I. Hamamoto, B. Mottelson, Scholarpedia 7, 10693 (2012)

    Article  Google Scholar 

  30. R.F. Casten, A.I. Namenson, W.F. Davidson, D.D. Warner, H.G. Borner, Phys. Lett. B 76, 280 (1978)

    Article  ADS  Google Scholar 

  31. N. Alkhomashi et al., Phys. Rev. C 80, 064308 (2009)

    Article  ADS  Google Scholar 

  32. C. Wheldon, J. Garcés Narro, C.J. Pearson, P.H. Regan, Zs. Podolyák, D.D. Warner, P. Fallon, A.O. Macchiavelli, M. Cromaz, Phys. Rev. C 63, 011304(R) (2000)

    Article  ADS  Google Scholar 

  33. Zs. Podolyák et al., Phys. Rev. C 79, 031305(R) (2009)

    Article  ADS  Google Scholar 

  34. J. Jolie, A. Linnemann, Phys. Rev. C 68, 031301(R) (2003)

    Article  ADS  Google Scholar 

  35. D. Bonatsos, Eur. Phys. J. A 53, 148 (2017)

    Article  ADS  Google Scholar 

  36. W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993)

    Article  ADS  Google Scholar 

  37. M. Brack, Rev. Mod. Phys. 65, 677 (1993)

    Article  ADS  Google Scholar 

  38. V.O. Nesterenko, Fiz. Elem. Chastits At. Yadra 23, 1665 (1992) [Sov. J. Part. Nucl. 23, 726 (1992)]

    Google Scholar 

  39. W.A. de Heer, W.D. Knight, M.Y. Chou, M.L. Cohen, Solid State Phys. 40, 93 (1987)

    Article  Google Scholar 

  40. K. Clemenger, Phys. Rev. B 32, 1359 (1985)

    Article  ADS  Google Scholar 

  41. W. Greiner, Z. Phys. A: Hadr. Nucl. 349, 315 (1994)

    Article  ADS  Google Scholar 

  42. J. Borggreen, P. Chowdhury, N. Kebaïli, L. Lundsberg-Nielsen, K. Lützenkirchen, M.B. Nielsen, J. Pedersen, H.D. Rasmussen, Phys. Rev. B 48, 17507 (1993)

    Article  ADS  Google Scholar 

  43. J. Pedersen, J. Borggreen, P. Chowdhury, N. Kebaïli, L. Lundsberg-Nielsen, K. Lützenkirchen, M.B. Nielsen, H.D. Rasmussen, Z. Phys. D: At. Mol. Clusters 26, 281 (1993)

    Article  Google Scholar 

  44. J. Pedersen, J. Borggreen, P. Chowdhury, N. Kebaïli, L. Lundsberg-Nielsen, K. Lützenkirchen, M.B. Nielsen, H.D. Rasmussen, inAtomic and nuclear clusters, edited by G.S. Anagnostatos, W. von Oertzen (Springer, Berlin, 1995), p. 30

  45. H. Haberland, Nucl. Phys. A 649, 415 (1999)

    Article  ADS  Google Scholar 

  46. M. Schmidt, H. Haberland, Eur. Phys. J. D 6, 109 (1999)

    Article  ADS  Google Scholar 

  47. T.P. Martin, T. Bergmann, H. Göhlich, T. Lange, Chem. Phys. Lett. 172, 209 (1990)

    Article  ADS  Google Scholar 

  48. T.P. Martin, T. Bergmann, H. Göhlich, T. Lange, Z. Phys. D: At. Mol. Clusters 19, 25 (1991)

    Article  Google Scholar 

  49. S. Bjørnholm, J. Borggreen, O. Echt, K. Hansen, J. Pedersen, H.D. Rasmussen, Phys. Rev. Lett. 65, 1627 (1990)

    Article  ADS  Google Scholar 

  50. S. Bjørnholm, J. Borggreen, O. Echt, K. Hansen, J. Pedersen, H.D. Rasmussen, Z. Phys. D: At. Mol. Clusters 19, 47 (1991)

    Article  Google Scholar 

  51. W.D. Knight, K. Clemenger, W.A. de Heer, W.A. Saunders, M.Y. Chou, M.L. Cohen, Phys. Rev. Lett. 52, 2141 (1984)

    Article  ADS  Google Scholar 

  52. J. Pedersen, S. Bjørnholm, J. Borggreen, K. Hansen, T.P. Martin, H.D. Rasmussen, Nature 353, 733 (1991)

    Article  ADS  Google Scholar 

  53. C. Bréchignac, Ph. Cahuzac, M. de Frutos, J.-Ph. Roux, K. Bowen, inPhysics and chemistry of finite systems: from clusters to crystals, edited by P. Jena et al. (Kluwer, Dordrecht, 1992), Vol. 1, p. 369

  54. C. Bréchignac, Ph. Cahuzac, F. Carlier, M. de Frutos, J.-Ph. Roux, Phys. Rev. B 47, 2271 (1993)

    Article  ADS  Google Scholar 

  55. D. Bonatsos, A. Martinou, S. Sarantopoulou, I.E. Assimakis, S.K. Peroulis, N. Minkov, to be published

  56. K.T. Hecht, A. Adler, Nucl. Phys. A 137, 129 (1969)

    Article  ADS  Google Scholar 

  57. A. Arima, M. Harvey, K. Shimizu, Phys. Lett. B 30, 517 (1969)

    Article  ADS  Google Scholar 

  58. R.D. Ratna Raju, J.P. Draayer, K.T. Hecht, Nucl. Phys. A 202, 433 (1973)

    Article  ADS  Google Scholar 

  59. J.P. Draayer, K.J. Weeks, K.T. Hecht, Nucl. Phys. A 381, 1 (1982)

    Article  ADS  Google Scholar 

  60. J.N. Ginocchio, Phys. Rev. Lett. 78, 436 (1997)

    Article  ADS  Google Scholar 

  61. J.N. Ginocchio, J. Phys. G: Nucl. Part. Phys. 25, 617 (1999)

    Article  ADS  Google Scholar 

  62. O. Castaños, M. Moshinsky, C. Quesne, Phys. Lett. B 277, 238 (1992)

    Article  ADS  Google Scholar 

  63. O. Castaños, V. Velázquez A., P.O. Hess, J.G. Hirsch, Phys. Lett. B 321, 303 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  64. J.P. Draayer, K.J. Weeks, Phys. Rev. Lett. 51, 1422 (1983)

    Article  ADS  Google Scholar 

  65. J.P. Draayer, K.J. Weeks, Ann. Phys. (N.Y.) 156, 41 (1984)

    Article  ADS  Google Scholar 

  66. C.M. Lederer, V.S. Shirley (Eds.),Table of isotopes (Wiley, New York, 1978)

  67. J.-P. Delaroche, M. Girod, J. Libert, H. Goutte, S. Hilaire, S. Péru, N. Pillet, G.F. Bertsch, Phys. Rev. C 81, 014303 (2010)

    Article  ADS  Google Scholar 

  68. B. Pritychenko, M. Birsh, B. Singh, M. Horoi, At. Data Nucl. Data Tables 107, 1 (2016)

    Article  ADS  Google Scholar 

  69. B. Pritychenko, M. Birsh, B. Singh, M. Horoi, At. Data Nucl. Data Tables 114, 371 (2017)

    Article  ADS  Google Scholar 

  70. D. Bonatsos, A. Martinou, I.E. Assimakis, S. Sarantopoulou, S. Peroulis, N. Minkov, inNuclear Theory ’38, Proceedings of the 38th International Workshop on Nuclear Theory (Rila 2019), edited by M. Gaidarov, N. Minkov (Heron Press, Sofia, 2019), p. 128

  71. D. Bonatsos, R.F. Casten, A. Martinou, I.E. Assimakis, N. Minkov, S. Sarantopoulou, R.B. Cakirli, K. Blaum, arXiv:1712.04126 [nucl-th]

  72. A. Martinou, D. Bonatsos, N. Minkov, I.E. Assimakis, S. Sarantopoulou, S. Peroulis, inNuclear Theory ’37, Proceedings of the 37th International Workshop on Nuclear Theory (Rila 2018), edited by M. Gaidarov, N. Minkov (Heron Press, Sofia, 2018), p. 41

  73. O. Castaños, J.P. Draayer, Y. Leschber, Z. Phys. A 329, 33 (1988)

    ADS  Google Scholar 

  74. J.P. Draayer, S.C. Park, O. Castaños, Phys. Rev. Lett. 62, 20 (1989)

    Article  ADS  Google Scholar 

  75. A. Bohr, B.R. Mottelson, inNuclear structure: nuclear deformations (Benjamin, New York, 1975), Vol. II

  76. H. De Vries, C.W. De Jager, C. De Vries, At. Data Nucl. Data Tables 36, 495 (1987)

    Article  ADS  Google Scholar 

  77. J.R. Stone, N.J. Stone, S. Moszkowski, Phys. Rev. C 89, 044316 (2014)

    Article  ADS  Google Scholar 

  78. A.S. Davydov, G.F. Filippov, Nucl. Phys. 8, 237 (1958)

    Article  Google Scholar 

  79. L. Esser, U. Neuneyer, R.F. Casten, P. von Brentano, Phys. Rev. C 55, 206 (1997)

    Article  ADS  Google Scholar 

  80. G.A. Lalazissis, S. Raman, P. Ring, At. Data Nucl. Data Tables 71, 1 (1999)

    Article  ADS  Google Scholar 

  81. F. Iachello, Phys. Rev. Lett. 87, 052502 (2001)

    Article  ADS  Google Scholar 

  82. R.F. Casten, E.A. McCutchan, J. Phys. G: Nucl. Part. Phys. 34, R285 (2007)

    Article  ADS  Google Scholar 

  83. P. Cejnar, J. Jolie, R.F. Casten, Rev. Mod. Phys. 82, 2155 (2010)

    Article  ADS  Google Scholar 

  84. J. Cseh, Phys. Rev. C 101, 054306 (2020)

    Article  ADS  Google Scholar 

  85. C.E. Vargas, J.G. Hirsch, J.P. Draayer, Phys. Rev. C 64, 034306 (2001)

    Article  ADS  Google Scholar 

  86. C.E. Vargas, J.G. Hirsch, J.P. Draayer, Phys. Rev. C 66, 064309 (2002)

    Article  ADS  Google Scholar 

  87. G. Popa, A. Georgieva, J.P. Draayer, Phys. Rev. C 69, 064307 (2004)

    Article  ADS  Google Scholar 

  88. A.P. Zuker, J. Retamosa, A. Poves, E. Caurier, Phys. Rev. C 52, R1741 (1995)

    Article  ADS  Google Scholar 

  89. A.P. Zuker, A. Poves, F. Nowacki, S.M. Lenzi, Phys. Rev. C 92, 024320 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Bonatsos.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonatsos, D., Martinou, A., Sarantopoulou, S. et al. Parameter-free predictions for the collective deformation variables β and γ within the pseudo-SU(3) scheme. Eur. Phys. J. Spec. Top. 229, 2367–2387 (2020). https://doi.org/10.1140/epjst/e2020-000034-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2020-000034-3

Navigation