Skip to main content
Log in

Peptide Amphiphile Micelles Self-Adjuvant Group A Streptococcal Vaccination

  • Research Article
  • Theme: Nanoparticles in Vaccine Delivery
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Delivery system design and adjuvant development are crucially important areas of research for improving vaccines. Peptide amphiphile micelles are a class of biomaterials that have the unique potential to function as both vaccine delivery vehicles and self-adjuvants. In this study, peptide amphiphiles comprised of a group A streptococcus B cell antigen (J8) and a dialkyl hydrophobic moiety (diC16) were synthesized and organized into self-assembled micelles, driven by hydrophobic interactions among the alkyl tails. J8-diC16 formed cylindrical micelles with highly α-helical peptide presented on their surfaces. Both the micelle length and secondary structure were shown to be enhanced by annealing. When injected into mice, J8-diC16 micelles induced a strong IgG1 antibody response that was comparable to soluble J8 peptide supplemented with two classical adjuvants. It was discovered that micelle adjuvanticity requires the antigen be a part of the micelle since separation of J8 and the micelle was insufficient to induce an immune response. Additionally, the diC16 tail appears to be non-immunogenic since it does not stimulate a pathogen recognition receptor whose agonist (Pam3Cys) possesses a very similar chemical structure. The research presented in this paper demonstrates the promise peptide amphiphile micelles have in improving the field of vaccine engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tart AH, Walker MJ, Musser JM. New understanding of the group A streptococcus pathogenesis cycle. Trends Microbiol. 2007;15(7):318–25.

    Article  CAS  PubMed  Google Scholar 

  2. Carapetis JR, Steer AC, Mulholland EK, Weber M. The global burden of group A streptococcal diseases. Lancet Infect Dis. 2005;5(11):685–94.

    Article  PubMed  Google Scholar 

  3. Eison TM, Ault BH, Jones DP, Chesney RW, Wyatt RJ. Post-streptococcal acute glomerulonephritis in children: clinical features and pathogenesis. Pediatr Nephrol. 2011;26(2):165–80.

    Article  PubMed  Google Scholar 

  4. Lawrence RS. Vaccines for the 21st century: a tool for decision making. Washington, D.C.: National Academies Press; 2000.

    Google Scholar 

  5. Steer AC, Batzloff MR, Mulholland K, Carapetis JR. Group A streptococcal vaccines: facts versus fantasy. Curr Opin Infect Dis. 2009;22(6):544–52.

    Article  CAS  PubMed  Google Scholar 

  6. Sagar V, Bergmann R, Nerlich A, McMillan DJ, Nitsche-Schmitz DP, Chhatwal GS. Variability in the distribution of genes encoding virulence factors and putative extracellular proteins of Streptococcus pyogenes in India, a region with high streptococcal disease burden, and implication for development of a regional multisubunit vaccine. Clin Vaccine Immunol. 2012;19(11):1818–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Persson J, Beall B, Linse S, Lindahl G. Extreme sequence divergence but conserved ligand-binding specificity in Streptococcus pyogenes M protein. PLoS Pathog. 2006;2(5):e47.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Lymbury RS, Olive C, Powell KA, Good MF, Hirst RG, LaBrooy JT, et al. Induction of autoimmune valvulitis in Lew rats following immunization with peptides from the conserved region of group A streptococcal M protein. J Autoimmun. 2003;20(3):211–7.

    Article  CAS  PubMed  Google Scholar 

  9. Olive C, Sun HK, Ho MF, Dyer J, Horvath A, Toth I, et al. Intranasal administration is an effective mucosal vaccine delivery route for self-adjuvanting lipid core peptides targeting the group A streptococcal M protein. J Infect Dis. 2006;194(3):316–24.

    Article  CAS  PubMed  Google Scholar 

  10. Pandey M, Wykes MN, Hartas J, Good MF, Batzloff MR. Long-term antibody memory induced by synthetic peptide vaccination is protective against Streptococcus pyogenes infection and is independent of memory T cell help. J Immunol. 2013;190(6):2692–701.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Relf WA, Cooper J, Brandt ER, Hayman WA, Anders RF, Pruksakorn S, et al. Mapping a conserved conformational epitope from the M protein of group A streptococci. Pept Res. 1996;9(1):12–20.

    CAS  PubMed  Google Scholar 

  12. Hayman WA, Brandt ER, Relf WA, Cooper J, Saul A, Good MF. Mapping the minimal murine T cell and B cell epitopes within a peptide vaccine candidate from the conserved region of the M protein of group A streptococcus. Int Immunol. 1997;9(11):1723–33.

    Article  CAS  PubMed  Google Scholar 

  13. Black M, Trent A, Tirrell M, Olive C. Advances in the design and delivery of peptide subunit vaccines with a focus on toll-like receptor agonists. Expert Rev Vaccines. 2010;9(2):157–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Simerska P, Abdel-Aal AB, Fujita Y, Moyle PM, McGeary RP, Olive C, et al. Development of a liposaccharide-based delivery system and its application to the design of group A streptococcal vaccines. J Med Chem. 2008;51(5):1447–52.

    Article  CAS  PubMed  Google Scholar 

  15. Middelberg AP, Rivera-Hernandez T, Wibowo N, Lua LH, Fan Y, Magor G, et al. A microbial platform for rapid and low-cost virus-like particle and capsomere vaccines. Vaccine. 2011;29(41):7154–62.

    Article  CAS  PubMed  Google Scholar 

  16. Pandey M, Batzloff MR, Good MF. Mechanism of protection induced by group A streptococcus vaccine candidate J8-DT: contribution of B and T-cells toward protection. PLoS One. 2009;4(4):e5147.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Azmi F, Fuaad AAA, Skwarczynski M, Toth I. Recent progress in adjuvant discovery for peptide-based subunit vaccines. Hum Vaccines Immunother. 2013;10(3):27332.

    Google Scholar 

  18. Zhao L, Seth A, Wibowo N, Zhao CX, Mitter N, Yu C, et al. Nanoparticle vaccines. Vaccine. 2014;32(3):327–37.

    Article  PubMed  Google Scholar 

  19. Webber MJ, Tongers J, Newcomb CJ, Marquardt KT, Bauersachs J, Losordo DW, et al. Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair. Proc Natl Acad Sci U S A. 2011;108(33):13438–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Mammadov R, Mammadov B, Toksoz S, Aydin B, Ragci Y, Tekinay AB, et al. Heparin mimetic peptide nanofibers promote angiogenesis. Biomacromolecules. 2011;12(10):3508–19.

    Article  CAS  PubMed  Google Scholar 

  21. Anderson JM, Kushwaha M, Tambralli A, Bellis SL, Camata RP, Jun HW. Osteogenic differentiation of human mesenchymal stem cells directed by extracellular matrix-mimicking ligands in a biomimetic self-assembled peptide amphiphile nanomatrix. Biomacromolecules. 2009;10(10):2935–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Mata A, Geng Y, Henrikson KJ, Aparicio C, Stock SR, Satcher RL, et al. Bone regeneration mediated by biomimetic mineralization of a nanofiber matrix. Biomaterials. 2010;31(23):6004–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Song Y, Li Y, Zheng Q, Wu K, Guo X, Wu Y, et al. Neural progenitor cells survival and neuronal differentiation in peptide-based hydrogels. J Biomater Sci Polym Ed. 2011;22(4–6):475–87.

    Article  CAS  PubMed  Google Scholar 

  24. Angeloni NL, Bond CW, Tang Y, Harrington DA, Zhang S, Stupp SI, et al. Regeneration of the cavernous nerve by Sonic hedgehog using aligned peptide amphiphile nanofibers. Biomaterials. 2011;32(4):1091–101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Peters D, Kastantin M, Kotamraju VR, Karmali PP, Gujraty K, Tirrell M, et al. Targeting atherosclerosis by using modular, multifunctional micelles. Proc Natl Acad Sci U S A. 2009;106(24):9815–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Missirlis D, Krogstad DV, Tirrell M. Internalization of p53(14–29) peptide amphiphiles and subsequent endosomal disruption results in SJSA-1 cell death. Mol Pharm. 2010;7(6):2173–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Standley SM, Toft DJ, Cheng H, Soukasene S, Chen J, Raja SM, et al. Induction of cancer death by self-assembling nanostructures incorporating a cytotoxic peptide. Cancer Res. 2010;70(8):3020–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Lim DJ, Antipenko SV, Anderson JM, Jaimes KF, Viera L, Stephen BR, et al. Enhanced rat islet function and survival in vitro using a biomimetic self-assembled nanomatrix gel. Tissue Eng A. 2011;17(3–4):399–406.

    Article  CAS  Google Scholar 

  29. Khan S, Sur S, Newcomb CJ, Appelt EA, Stupp SI. Self-assembling glucagon-like peptide 1-mimetic peptide amphiphiles for enhanced activity and proliferation of insulin-secreting cells. Acta Biomater. 2012;8(5):1685–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Boato F, Thomas RM, Ghasparian A, Freund-REnard A, Moehle K, Robinson JA. Synthetic virus-like particles from self-assembling coiled-coil lipopeptides and their use in antigen display to the immune system. Angew Chem Int Ed. 2007;46(47):9015–8.

    Article  CAS  Google Scholar 

  31. Lee KC, Carlson PA, Goldstein AS, Yager P, Gelb MH. Protection of a decapeptide from proteolytic cleavage by lipidation and self-assembly into high-axial-ratio microstructures: a kinetic and structural study. Langmuir. 1999;15(17):5500–8.

    Article  CAS  Google Scholar 

  32. Missirlis D, Khant H, Tirrell M. Mechanisms of peptide amphiphile internalization by SJSA-1 cells in vitro. Biochemistry. 2009;48(15):3304–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Black M, Trent A, Kostenko Y, Lee JS, Olive C, Tirrell M. Self-assembled peptide amphiphile micelles containing a cytotoxic T-cell epitope promote a protective immune response in vivo. Adv Mater. 2012;24(28):3845–9.

    Article  CAS  PubMed  Google Scholar 

  34. Berndt P, Fields GB, Tirrell M. Synthetic lipidation of peptides and amino acids: monolayer structure and properties. J Am Chem Soc. 1995;117(37):9515–22.

    Article  CAS  Google Scholar 

  35. Kastantin M, Ananthanarayanan B, Karmali P, Ruoslahti E, Tirrell M. Effect of the lipid chain melting transition on the stability of DSPE-PEG(2000) micelles. Langmuir. 2009;25(13):7279–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Mlinar LB, Chung EJ, Wonder EA, Tirrell M. Active targeting of early and mid-stage atherosclerosis plaques using self-assembled peptide amphiphile micelles. BIomaterials. 2014;35(30):8678–86.

    Article  CAS  PubMed  Google Scholar 

  37. Greenfield NJ, Fasman GD. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry. 1969;8(10):4108–16.

    Article  CAS  PubMed  Google Scholar 

  38. Skwarcynski M, Kamaruzaman KA, Srinivasan S, Zaman M, Lin IC, Batzloff MR, et al. M-protein-derived conformational peptide epitope vaccine candidate against group A streptococcus. Curr Drug Deliv. 2013;10(1):39–45.

    Article  Google Scholar 

  39. Jackson DC, Lau YF, Le T, Suhrbier A, Deliyannis G, Cheers C, et al. A totally synthetic vaccine of generic structure that targets Toll-like receptor 2 on dendritic cells and promotes antibody or cytotoxic T cell responses. Proc Natl Acad Sci U S A. 2004;101(43):15440–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Pashuck ET, Stupp SI. Direct observation of morphological transformation from twisted ribbons into helical ribbons. J Am Chem Soc. 2010;132(26):8819–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Gore T, Dori Y, Talmon Y, Tirrell M, Biance-Peled H. Self-assembly of model collagen peptide amphiphiles. Langmuir. 2001;17(17):5352–60.

    Article  CAS  Google Scholar 

  42. Shimada T, Lee S, Bates FS, Hotta A, Tirrell M. Wormlike micelle formation in peptide-lipid conjugates driven by secondary structure transformation of the headgroups. J Phys Chem B. 2009;113(42):13711–4.

    Article  CAS  PubMed  Google Scholar 

  43. Ghendon Y, Markushin S, Akopova I, Koptiaeva I, Krivtsov G. Chitosan as an adjuvant for poliovaccine. J Med Virol. 2011;83(5):847–52.

    Article  CAS  PubMed  Google Scholar 

  44. Allard-Vannier E, Cohen-Jonathan S, Gautlier J, Herve-Aubert K, Munnier E, Souce M, et al. Pegylated magnetic nanocarriers for doxorubicin delivery: a quantitative determination of stealthiness in vitro and in vivo. Eur J Pharm Biopharm. 2012;81(3):498–505.

    Article  CAS  PubMed  Google Scholar 

  45. Narayanan D, Anitha A, Jayakumar R, Nair SV, Chennazhi KP. Synthesis, characterization and preliminary in vitro evaluation of PTH 1–34 loaded chitosan nanoparticles for osteoporosis. J Biomed Nanotechnol. 2012;8(1):98–106.

    Article  CAS  PubMed  Google Scholar 

  46. Gosens I, Post JA, Fonteyne LJDL, Jansen EH, Geus JW, Cassee FR, et al. Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation. Part Fibre Toxicol. 2010;7(1):37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Wu J, Kamaly N, Shi J, Zhao L, Xiao Z, Hollett G, et al. Development of multinuclear polymeric nanoparticles as robust protein nanocarriers. Angew Chem Int Ed. 2014;53(34):8975–9.

    Article  CAS  Google Scholar 

  48. Yao B, Zheng D, Liang S, Zhang C. Conformational B-cell epitope prediction on antigen protein structures: a review of current algorithms and comparison with common binding site prediction methods. PLoS One. 2013;8(4):e62249.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. McNamara C, Zinkernagel AS, Macheboeuf P, Cunningham MW, Nizet V, Ghosh P. Coiled-coil irregularities and instabilities in group A streptococcus M1 are required for virulence. Science. 2008;319(5868):1405–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Tu RS, Marullo R, Pynn R, Bitton R, Bianco-Peled H, Tirrell MV. Cooperative DNA binding and assembly by a bZip peptide-amphiphile. Soft Matter. 2010;6:1035–44.

    Article  CAS  Google Scholar 

  51. Trent A, Marullo R, Lin B, Black M, Tirrell M. Structural properties of soluble peptide amphiphile micelles. Soft Matter. 2011;7:9572–82.

    Article  CAS  Google Scholar 

  52. Marullo R, Kastantin M, Drews LB, Tirrell M. Peptide contour length determines equilibrium secondary structure in protein-analogous micelles. Biopolymers. 2013;99(9):573–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Hansmann UHE, Masuya M, Okamoto Y. Characteristic temperatures of folding of a small peptide. Proc Natl Acad Sci U S A. 1997;94(20):10652–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Nagarajan R. Molecular packing parameter and surfactant self-assembly: the neglected role of the surfactant tail. Langmuir. 2002;18(1):31–8.

    Article  CAS  Google Scholar 

  55. Satoh M, Kuroda Y, Yoshida H, Behney KM, Mizutani A, Akaogi J, et al. Induction of lupus autoantibodies by adjuvants. J Autoimmun. 2003;21(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  56. Kuroda Y, Nacionales DC, Akaogi J, Reeves WH, Satoh M. Autoimmunity induced by adjuvant hydrocarbon oil components of vaccine. Biomed Pharmacother. 2004;58(5):325–37.

    Article  CAS  PubMed  Google Scholar 

  57. Hailemichael Y, Dai Z, Jaffarzad N, Ye Y, Medina MA, Huang X-F, et al. Persistent antigen at vaccination sites induces tumor-specific CD8+ T cell sequestration, dysfunction and deletion. Nat Med. 2013;19(4):465–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Schunk MK, Macallum GE. Applications and optimization of immunization procedures. ILAR J. 2005;46(3):241–57.

    Article  CAS  PubMed  Google Scholar 

  59. Zaman M, Abdel-Aal AB, Fujita Y, Phillipps KS, Batzloff MR, Good MF, et al. Immunological evaluation of lipopeptide group A streptococcus (GAS) vaccine: structure-activity relationship. PLoS One. 2012;7(1):e30146.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Rudra JS, Tian YF, Jung JP, Collier JH. A self-assembling peptide acting as an immune adjuvant. Proc Natl Acad Sci U S A. 2010;107(2):622–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Chen J, Pompano RR, Santiago FW, Maillat L, Sciammas R, Sun T, et al. The use of self-adjuvanting nanofiber vaccines to elicit high-affinity B cell responses to peptide antigens without inflammation. Biomaterials. 2013;34(34):8776–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from funds provided from the University of California, Berkeley and the University of Chicago, as well as research funding from the University of Chicago Institute for Translational Medicine (CTSA UL1 TR000430). We thank Dr. Eva Ulery for her comments and valuable discussion regarding the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew V. Tirrell.

Additional information

Guest Editor: Aliasger Salem

Amanda Trent and Bret D. Ulery contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trent, A., Ulery, B.D., Black, M.J. et al. Peptide Amphiphile Micelles Self-Adjuvant Group A Streptococcal Vaccination. AAPS J 17, 380–388 (2015). https://doi.org/10.1208/s12248-014-9707-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9707-3

KEY WORDS

Navigation