Skip to main content

Advertisement

Log in

Development and Characterization of Dapsone Cocrystal Prepared by Scalable Production Methods

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

In this study, the formation of caffeine/dapsone (CAF/DAP) cocrystals by scalable production methods, such as liquid-assisted grinding (LAG) and spray drying, was investigated in the context of the potential use of processed cocrystal powder for pulmonary delivery. A CAF/DAP cocrystal (1:1 M ratio) was successfully prepared by slow evaporation from both acetone and ethyl acetate. Acetone, ethyl acetate, and ethanol were all successfully used to prepare cocrystals by LAG and spray drying. The powders obtained were characterized by X-ray diffractometry (XRD), differential scanning calorimetry (DSC), thermogravimetry (TGA), and Fourier transform infrared spectroscopy (FTIR). Laser diffraction analysis indicated a median particle size (D50) for spray-dried powders prepared from acetone, ethanol, and ethyl acetate of 5.4 ± 0.7, 5.2 ± 0.1, and 5.1 ± 0.0 μm respectively, which are appropriate sizes for pulmonary delivery by means of a dry powder inhaler. The solubility of the CAF/DAP cocrystal in phosphate buffer pH 7.4, prepared by spray drying using acetone, was 506.5 ± 31.5 μg/mL, while pure crystalline DAP had a measured solubility of 217.1 ± 7.8 μg/mL. In vitro cytotoxicity studies using Calu-3 cells indicated that the cocrystals were not toxic at concentrations of 0.1 and of 1 mM of DAP, while an in vitro permeability study suggested caffeine may contribute to the permeation of DAP by hindering the efflux effect. The results obtained indicate that the CAF/DAP cocrystal, particularly when prepared by the spray drying method, represents a possible suitable approach for inhalation formulations with applications in pulmonary pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, et al. Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci. 2014;9:304–16.

    Article  Google Scholar 

  2. Lipert MP, Roy L, Childs SL, Rodríguez-Hornedo N. Cocrystal solubilization in biorelevant media and its prediction from drug solubilization. J Pharm Sci. 2015;104:4153–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Thakuria R, Delori A, Jones W, Lipert MP, Roy L, Rodríguez-Hornedo N. Pharmaceutical cocrystals and poorly soluble drugs. Int J Pharm. 2013;453:101–25.

    Article  PubMed  CAS  Google Scholar 

  4. Patil SP, Modi SR, Bansal AK. Generation of 1:1 carbamazepine:nicotinamide cocrystals by spray drying. Eur J Pharm Sci. 2014;62:251–7.

    Article  PubMed  CAS  Google Scholar 

  5. European Medicines Agency. Reflection paper on the use of cocrystals of active substances in medicinal products. 2015.

  6. Karagianni A, Malamatari M, Kachrimanis K. Pharmaceutical cocrystals: new solid phase modification approaches for the formulation of APIs. Pharmaceutics [Internet]. 2018 [cited 2018 May 1];10. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5874831/.

  7. Food and Drug Administration. Regulatory Classification of Pharmaceutical Co-Crystals Guidance for Industry. 2016.

  8. Aitipamula S, Banerjee R, Bansal AK, Biradha K, Cheney ML, Choudhury AR, et al. Polymorphs, salts, and cocrystals: what’s in a name? Cryst Growth Des. 2012;12:2147–52.

    Article  CAS  Google Scholar 

  9. Shan N, Zaworotko MJ. The role of cocrystals in pharmaceutical science. Drug Discov Today. 2008;13:440–6.

    Article  PubMed  CAS  Google Scholar 

  10. Kim S, Li Z, Tseng Y-C, Nar H, Spinelli E, Varsolona R, et al. Development and characterization of a cocrystal as a viable solid form for an active pharmaceutical ingredient. Org Process Res Dev. 2013;17:540–8.

    Article  CAS  Google Scholar 

  11. Thipparaboina R, Kumar D, Chavan RB, Shastri NR. Multidrug co-crystals: towards the development of effective therapeutic hybrids. Drug Discov Today. 2016;21:481–90.

    Article  PubMed  CAS  Google Scholar 

  12. Cheney ML, Weyna DR, Shan N, Hanna M, Wojtas L, Zaworotko MJ. Coformer selection in pharmaceutical cocrystal development: a case study of a meloxicam aspirin cocrystal that exhibits enhanced solubility and pharmacokinetics. J Pharm Sci. 2011;100:2172–81.

    Article  PubMed  CAS  Google Scholar 

  13. Lu J, Rohani S. Synthesis and preliminary characterization of sulfamethazine-theophylline co-crystal. J Pharm Sci. 2010;99:4042–7.

    Article  PubMed  CAS  Google Scholar 

  14. Korotkova EI, Kratochvíl B. Pharmaceutical cocrystals. Procedia Chem. 2014;10:473–6.

    Article  CAS  Google Scholar 

  15. Qiao N, Li M, Schlindwein W, Malek N, Davies A, Trappitt G. Pharmaceutical cocrystals: an overview. Int J Pharm. 2011;419:1–11.

    Article  PubMed  CAS  Google Scholar 

  16. Braga D, Maini L, Grepioni F. Mechanochemical preparation of co-crystals. Chem Soc Rev. 2013;42:7638–48.

    Article  PubMed  CAS  Google Scholar 

  17. Alhalaweh A, Velaga SP. Formation of cocrystals from stoichiometric solutions of incongruently saturating systems by spray drying. Cryst Growth Des. 2010;10:3302–5.

    Article  CAS  Google Scholar 

  18. Paudel A, Worku ZA, Meeus J, Guns S, Van den Mooter G. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations. Int J Pharm. 2013;453:253–84.

    Article  PubMed  CAS  Google Scholar 

  19. Edwards JS, Betts L, Frazier ML, Pollet RM, Kwong SM, Walton WG, et al. Molecular basis of antibiotic multiresistance transfer in Staphylococcus aureus. Proc Natl Acad Sci U S A. 2013;110:2804–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Carvalho TC, Peters JI, Williams RO. Influence of particle size on regional lung deposition—what evidence is there? Int J Pharm. 2011;406:1–10.

    Article  PubMed  CAS  Google Scholar 

  21. Hickey AJ, Misra A, Fourie PB. Dry powder antibiotic aerosol product development: inhaled therapy for tuberculosis. J Pharm Sci. 2013;102:3900–7.

    Article  PubMed  CAS  Google Scholar 

  22. Mukker JK, Singh RSP, Derendorf H. Pharmacokinetic and pharmacodynamic implications in inhalable antimicrobial therapy. Adv Drug Deliv Rev. 2015;85:57–64.

    Article  PubMed  CAS  Google Scholar 

  23. Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6:67–74.

    Article  PubMed  CAS  Google Scholar 

  24. Ibrahim M, Verma R, Garcia-Contreras L. Inhalation drug delivery devices: technology update. Med Devices Auckl. 2015;8:131–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Mathias NR, Hussain MA. Non-invasive systemic drug delivery: developability considerations for alternate routes of administration. J Pharm Sci. 2010;99:1–20.

    Article  PubMed  CAS  Google Scholar 

  26. Patton JS. Mechanisms of macromolecule absorption by the lungs. Adv Drug Deliv Rev. 1996;19:3–36.

    Article  CAS  Google Scholar 

  27. Patton JS, Fishburn CS, Weers JG. The lungs as a portal of entry for systemic drug delivery. Proc Am Thorac Soc. 2004;1:338–44.

    Article  PubMed  CAS  Google Scholar 

  28. Yang MY, Chan JGY, Chan H-K. Pulmonary drug delivery by powder aerosols. J Control Release. 2014;193:228–40.

    Article  PubMed  CAS  Google Scholar 

  29. Jones RM, Neef N. Interpretation and prediction of inhaled drug particle accumulation in the lung and its associated toxicity. Xenobiotica. 2012;42:86–93.

    Article  PubMed  CAS  Google Scholar 

  30. Cochrane RG, Ramanujam K, Paul H, Russell D. Two-and-a-half years’ experimental work on the sulphone group of drugs. Lepr Rev. 1949;20:4–64.

    Google Scholar 

  31. Lucky AW, Maloney JM, Roberts J, Taylor S, Jones T, Ling M, et al. Dapsone gel 5% for the treatment of acne vulgaris: safety and efficacy of long-term (1 year) treatment. J Drugs Dermatol JDD. 2007;6:981–7.

    PubMed  Google Scholar 

  32. Pickert A, Raimer S. An evaluation of dapsone gel 5% in the treatment of acne vulgaris. Expert Opin Pharmacother. 2009;10:1515–21.

    Article  PubMed  CAS  Google Scholar 

  33. Wozel VEG. Innovative use of dapsone. Dermatol Clin. 2010;28:599–610.

    Article  PubMed  CAS  Google Scholar 

  34. Wozel G, Blasum C. Dapsone in dermatology and beyond. Arch Dermatol Res. 2014;306:103–24.

    Article  PubMed  CAS  Google Scholar 

  35. Lee KH, Park JH, Kim DH, Hwang J, Lee G, Hyun JS, et al. Dapsone as a potential treatment option for Henoch-Schönlein Purpura (HSP). Med Hypotheses. 2017;108:42–5.

    Article  PubMed  CAS  Google Scholar 

  36. Grebogi IH, Tibola APOV, Barison A, Grandizoli CWPS, Ferraz HG, Rodrigues LNC. Binary and ternary inclusion complexes of dapsone in cyclodextrins and polymers: preparation, characterization and evaluation. J Incl Phenom Macrocycl Chem. 2012;73:467–74.

    Article  CAS  Google Scholar 

  37. Dhople AM. In vitro activity of epiroprim, a dihydrofolate reductase inhibitor, singly and in combination with brodimoprim and dapsone, against Mycobacterium leprae. Int J Antimicrob Agents. 1999;12:319–23.

    Article  PubMed  CAS  Google Scholar 

  38. Kaplan JE, Benson C, Holmes KH, Brooks JT, Pau A, Masur H. Guidelines for prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from CDC, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. MMWR Recomm Rep. 2009;58:1–207. quiz CE1–2074

    Google Scholar 

  39. Hughes WT. Use of dapsone in the prevention and treatment of Pneumocystis carinii pneumonia: a review. Clin Infect Dis. 1998;27:191–204.

    Article  PubMed  CAS  Google Scholar 

  40. Agrawal S, Agarwalla A. Dapsone hypersensitivity syndrome: a clinico-epidemiological review. J Dermatol. 2005;32:883–9.

    Article  PubMed  Google Scholar 

  41. Gutiérrez S, Morilla R, León JA, Martín-Garrido I, Rivero L, Friaza V, et al. High prevalence of pneumocystis jiroveci colonization among young HIV-infected patients. J Adolesc Health. 2011;48:103–5.

    Article  PubMed  Google Scholar 

  42. Nickel S, Clerkin CG, Selo MA, Ehrhardt C. Transport mechanisms at the pulmonary mucosa: implications for drug delivery. Expert Opin Drug Deliv. 2016;13:667–90.

    Article  PubMed  CAS  Google Scholar 

  43. Lindenberg M, Kopp S, Dressman JB. Classification of orally administered drugs on the World Health Organization model list of essential medicines according to the biopharmaceutics classification system. Eur J Pharm Biopharm. 2004;58:265–78.

    Article  PubMed  Google Scholar 

  44. Martins I, Martins M, Fernandes A, André V, Duarte MT. An insight into dapsone co-crystals: sulfones as participants in supramolecular interactions. CrystEngComm. 2013;15:8173–9.

    Article  CAS  Google Scholar 

  45. He H, Jiang L, Zhang Q, Huang Y, Wang J-R, Mei X. Polymorphism observed in dapsone–flavone cocrystals that present pronounced differences in solubility and stability. CrystEngComm. 2015;17:6566–74.

    Article  CAS  Google Scholar 

  46. Jiang L, Huang Y, Zhang Q, He H, Xu Y, Mei X. Preparation and solid-state characterization of dapsone drug–drug co-crystals. Cryst Growth Des. 2014;14:4562–73.

    Article  CAS  Google Scholar 

  47. Kassim Z, Greenough A, Rafferty GF. Effect of caffeine on respiratory muscle strength and lung function in prematurely born, ventilated infants. Eur J Pediatr. 2009;168:1491–5.

    Article  PubMed  CAS  Google Scholar 

  48. Nawrot P, Jordan S, Eastwood J, Rotstein J, Hugenholtz A, Feeley M. Effects of caffeine on human health. Food Addit Contam. 2003;20:1–30.

    Article  PubMed  CAS  Google Scholar 

  49. Grossjohann C, Serrano DR, Paluch KJ, O’Connell P, Vella-Zarb L, Manesiotis P, et al. Polymorphism in sulfadimidine/4-aminosalicylic acid cocrystals: solid-state characterization and physicochemical properties. J Pharm Sci. 2015;104:1385–98.

    Article  PubMed  CAS  Google Scholar 

  50. Healy A. Cocrystal habit engineering to improve drug dissolution and alter derived powder properties. 2016 [cited 2017 Nov 14]; Available from: http://www.tara.tcd.ie/handle/2262/78793.

  51. Nie J, Yang D, Hu K, Lu Y. Study on four polymorphs of bifendate based on X-ray crystallography. Acta Pharm Sin B. 2016;6:234–42.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Amaro MI, Tewes F, Gobbo O, Tajber L, Corrigan OI, Ehrhardt C, et al. Formulation, stability and pharmacokinetics of sugar-based salmon calcitonin-loaded nanoporous/nanoparticulate microparticles (NPMPs) for inhalation. Int J Pharm. 2015;483:6–18.

    Article  PubMed  CAS  Google Scholar 

  53. Paluch KJ, Tajber L, Corrigan OI, Healy AM. Impact of process variables on the micromeritic and physicochemical properties of spray-dried porous microparticles, part I: introduction of a new morphology classification system. J Pharm Pharmacol. 2012;64:1570–82.

    Article  PubMed  CAS  Google Scholar 

  54. de Almeida Borges VR, Simon A, Sena ARC, Cabral LM, de Sousa VP. Nanoemulsion containing dapsone for topical administration: a study of in vitro release and epidermal permeation. Int J Nanomedicine. 2013;8:535–44.

    PubMed Central  Google Scholar 

  55. Harris KDM, Cheung EY. How to determine structures when single crystals cannot be grown: opportunities for structure determination of molecular materials using powder diffraction data. Chem Soc Rev. 2004;33:526–38.

    Article  PubMed  CAS  Google Scholar 

  56. Corrigan OI. Thermal analysis of spray dried products. Thermochim Acta. 1995;248:245–58.

    Article  CAS  Google Scholar 

  57. Serrano DR, Persoons T, D’Arcy DM, Galiana C, Dea-Ayuela MA, Healy AM. Modelling and shadowgraph imaging of cocrystal dissolution and assessment of in vitro antimicrobial activity for sulfadimidine/4-aminosalicylic acid cocrystals. Eur J Pharm Sci. 2016;89:125–36.

    Article  PubMed  CAS  Google Scholar 

  58. Amaro MI, Tajber L, Corrigan OI, Healy AM. Optimisation of spray drying process conditions for sugar nanoporous microparticles (NPMPs) intended for inhalation. Int J Pharm. 2011;421:99–109.

    Article  PubMed  CAS  Google Scholar 

  59. Cal K, Sollohub K. Spray drying technique. I: hardware and process parameters. J Pharm Sci. 2010;99:575–86.

    Article  PubMed  CAS  Google Scholar 

  60. Chikhalia V, Forbes RT, Storey RA, Ticehurst M. The effect of crystal morphology and mill type on milling induced crystal disorder. Eur J Pharm Sci. 2006;27:19–26.

    Article  PubMed  CAS  Google Scholar 

  61. Wang W, Zhou QT, Sun S-P, Denman JA, Gengenbach TR, Barraud N, et al. Effects of surface composition on the aerosolisation and dissolution of inhaled antibiotic combination powders consisting of colistin and rifampicin. AAPS J. 2016;18:372–84.

    Article  PubMed  CAS  Google Scholar 

  62. Healy AM, Amaro MI, Paluch KJ, Tajber L. Dry powders for oral inhalation free of lactose carrier particles. Adv Drug Deliv Rev. 2014;75:32–52.

    Article  PubMed  CAS  Google Scholar 

  63. Walsh D, Serrano DR, Worku ZA, Norris BA, Healy AM. Production of cocrystals in an excipient matrix by spray drying. Int J Pharm. 2018;536:467–77.

    Article  PubMed  CAS  Google Scholar 

  64. Foster KA, Avery ML, Yazdanian M, Audus KL. Characterization of the Calu-3 cell line as a tool to screen pulmonary drug delivery. Int J Pharm. 2000;208:1–11.

    Article  PubMed  CAS  Google Scholar 

  65. Matilainen L, Toropainen T, Vihola H, Hirvonen J, Järvinen T, Jarho P, et al. In vitro toxicity and permeation of cyclodextrins in Calu-3 cells. J Control Release. 2008;126:10–6.

    Article  PubMed  CAS  Google Scholar 

  66. Ong HX, Traini D, Young PM. Pharmaceutical applications of the Calu-3 lung epithelia cell line. Expert Opin Drug Deliv. 2013;10:1287–302.

    Article  PubMed  CAS  Google Scholar 

  67. Ortiz M, Jornada DS, Pohlmann AR, Guterres SS. Development of novel chitosan microcapsules for pulmonary delivery of dapsone: characterization, aerosol performance, and in vivo toxicity evaluation. AAPS PharmSciTech. 2015;16:1033–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Seeland S, Treiber A, Hafner M, Huwyler J. On-line identification of P-glycoprotein substrates by monitoring of extracellular acidification and respiration rates in living cells. Biochim Biophys Acta BBA - Biomembr. 2011;1808:1827–31.

    Article  CAS  Google Scholar 

  69. Chappe V, Mettey Y, Vierfond JM, Hanrahan JW, Gola M, Verrier B, et al. Structural basis for specificity and potency of xanthine derivatives as activators of the CFTR chloride channel. Br J Pharmacol. 1998;123:683–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Bulteau L, Dérand R, Mettey Y, Métayé T, Morris MR, McNeilly CM, et al. Properties of CFTR activated by the xanthine derivative X-33 in human airway Calu-3 cells. Am J Physiol Cell Physiol. 2000;279:C1925–37.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the assistance of Dr. Helge Müller-Bunz, School of Chemistry and Chemical Biology, University College Dublin, Ireland, in undertaking the SC-XRD analysis.

Funding

This material is based upon works supported by FAPERJ (Rio de Janeiro, Brazil), CAPES (Brasília, Brazil) under Grant No. 3372/13-8 and the Science Foundation Ireland under Grant No. 12/RC/2275.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucio Mendes Cabral.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 14.2 kb)

ESM 2

Fig. S1 TGA of physical mixture CAF:DAP(1:1) (A); cocrystal obtained by LAG CAF:DAP(1:1) using acetone (B), using ethanol (C) and using ethyl acetate(D); cocrystal obtained by spray drying CAF:DAP(1:1) using acetone (E), using ethanol (F) and using ethyl acetate (G) (PNG 54.7 kb)

High resolution image file (TIF 989 kb)

ESM 3

Fig. S2 FTIR spectra of physical mixture CAF:DAP(1:1) (A), cocrystal obtained by milling LAG CAF:DAP(1:1) using acetone (B), using ethanol (C) and using ethyl acetate(D). Cocrystal obtained spray drying CAF:DAP(1:1) using acetone (E), using ethanol (F) and using ethyl acetate (G) (PNG 56.1 kb)

High resolution image file (TIF 515 kb)

ESM 4

(DOCX 14.2 kb)

ESM 5

Fig. S3 SEM of physical mixture CAF:DAP(1:1) (A1 and A2); cocrystal obtained by LAG CAF:DAP(1:1) using acetone (B1 and B2), using ethanol (C1 and C2) and using ethyl acetate(D1 and D2); cocrystal obtained by spray drying CAF:DAP(1:1) using acetone (E1 and E2), using ethanol (F1 and F2) and using ethyl acetate (G1 and G2). Magnification 1 = 100 X and 2 = 5000 X (PNG 454 kb)

High resolution image file (TIF 348 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Amaral, L.H., do Carmo, F.A., Amaro, M.I. et al. Development and Characterization of Dapsone Cocrystal Prepared by Scalable Production Methods. AAPS PharmSciTech 19, 2687–2699 (2018). https://doi.org/10.1208/s12249-018-1101-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1101-5

KEY WORDS

Navigation