Skip to main content
Log in

LC-MS Quantitative Determination of Atropine and Scopolamine in the Floral Nectar of Datura Species

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The present study aimed at determining selected alkaloid components in the nectar of Datura species, to elucidate whether the alkaloid content of the floral nectar can lead to intoxication. A simple and rapid liquid chromatography coupled with electrospray mass spectrometry analysis was developed for the quantitative determination of atropine and scopolamine, the main toxic alkaloids of the Datura species. This method allowed the direct coupling of an electrospray mass selective detector to the LC system. Under these conditions, atropine and scopolamine were well separated from other components and detected with mass spectrometry (mass selective detector). Simultaneous determination of atropine and scopolamine was performed with gradient elution on an Ascentis Express C18 (Supelco) reversed-phase column based on a new fused core particle design. Liquid chromatography coupled with electrospray mass spectrometry was used in positive ion mode. Atropine and scopolamine produced protonated species at m/z 290 and 304 (which are also the base peaks). Our data confirmed that the alkaloid characteristics for the vegetative and reproductive parts of the Datura plants may also occur in the nectar secreted by the flowers. In Datura species with large flowers and high nectar amounts, the alkaloid content increases proportionately and thus the nectar may be a potential source of intoxication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rätsch C (2007) Enzyklopädie der psychoaktiven Pflanzen. AT Verlag, Schweiz, pp 194–218

    Google Scholar 

  2. Birmes P, Chounet V, Mazerolles M, Cathala B, Schmitt L, Lauque D (2002) Presse Med 31:69–72

    CAS  Google Scholar 

  3. Diker D, Markovitz D, Rothman M, Sendovski U (2007) Eur J Intern Med 18:336–338. doi:10.1016/j.ejim.2006.09.035

    Article  CAS  Google Scholar 

  4. Hanna JP, Schmidley JW, Braselton WE (1992) Clin Neuropharmacol 15:109–113

    Article  CAS  Google Scholar 

  5. Chan TY (1995) Vet Hum Toxicol 37:156–157

    CAS  Google Scholar 

  6. Bruneton J (1999) Toxic plants dangerous to humans and animals. Intercept, Hampshire, p 465

    Google Scholar 

  7. van Wyk B-E, van Oudtshoorn B, Gericke N (1997) Medicinal plants of South Africa. Briza Publications, Pretoria, pp 102–103

    Google Scholar 

  8. van Wyk B-E, van Heerden FR, van Oudtshoorn B (2002) Poisonous plants of South Africa. Briza Publications, Pretoria, pp 86–87

    Google Scholar 

  9. van Wyk B-E, Gericke N (2000) Peoples’s plants. Briza Publications, Pretoria, p 162

    Google Scholar 

  10. The Merck Index on CD ROM, Version 12.2 (1997)

  11. Dictionary of Natural Products, CRC Press, CD-ROM, Version 11.2 (2003)

  12. Friedman M (2004) J Chromatogr A 1054:143–155. doi:10.1016/j.chroma.2004.04.049

    Article  CAS  Google Scholar 

  13. Miklós EJ, Botz L, Gy Horváth, Farkas Á, Gy Dezső, LGy Szabó (2001) Int J Hortic Sci 7:61–64

    Google Scholar 

  14. Miraldi E, Masti A, Ferri S, Comparini IB (2001) Fitoterapia 72:644–648

    Article  CAS  Google Scholar 

  15. Afsharypuor S, Mostajeran A, Mokhtary R (1995) Planta Med 61:383–384

    Article  Google Scholar 

  16. Berkov S, Zayed R (2004) Z Naturforsch C 59:184–186

    CAS  Google Scholar 

  17. Ionkova I, Witte L, Alfermann AW (1989) Planta Med 55:229–230

    Article  Google Scholar 

  18. Lindequist U (1992) Datura. In: Hagers Handbuch der pharmazeutischen Praxis, 5th edn, Springer, Berlin, pp 1138–1154

  19. Hiraoka N, Tashimo K, Kinoshita C, Hirooka M (1996) Biol Pharm Bull 19:1086–1089

    CAS  Google Scholar 

  20. Siddiqui S, Sultana H, Ahmed SS, Haider SI (1986) J Nat Prod 49:511–513

    Article  CAS  Google Scholar 

  21. Vitale AA, Acher A, Pomilio AB (1995) J Ethnopharmacol 49:81–89

    CAS  Google Scholar 

  22. Doncheva C, Berkov S, Philipov S (2006) Biochem Syst Ecol 34:478–488

    Article  CAS  Google Scholar 

  23. Grant V, Grant KA (1983) Bot Gaz 144:280–284

    Article  Google Scholar 

  24. Khalil S (1999) J Pharm Biomed 21:697–702

    Article  CAS  Google Scholar 

  25. El Ries MA, Khalil S (2001) J Pharm Biomed 25:3–7

    Article  CAS  Google Scholar 

  26. Dräger B (2002) J Chromatogr A 978:1–35

    Article  Google Scholar 

  27. Namera A, Yashiki M, Hirose Y, Yamaji S, Tani T, Kojima T (2002) Forensic Sci Int 130:34–43

    Article  CAS  Google Scholar 

  28. Kagale S, Marimuthu T, Thayumanavan B, Nandakumar R, Samiyappan R (2004) Physiol Mol Plant Pathol 65:91–100. doi:10.1016/j.pmpp.2004.11.008

    Google Scholar 

  29. Mroczek T, Głowniak K, Kowalska J (2006) J Chromatogr A 1107:9–18. doi:10.1016/j.chroma.2005.12.034

    Google Scholar 

  30. Cherkaoui S, Mateus L, Christen P, Veuthey J-L (1998) J Pharm Biomed 17:1167–1176

    Article  CAS  Google Scholar 

  31. Eeva M, Salo J-P, Oksman-Caldentey K-M (1998) J Pharm Biomed 16:717–722

    Article  CAS  Google Scholar 

  32. Bo T, Li KA, Liu H (2003) J Pharm Biomed 31:885–891

    Article  CAS  Google Scholar 

  33. Mateus L, Cherkaoui S, Christen P, Oksman-Caldentey K-M (2000) Phytochemistry 54:517–523

    Article  CAS  Google Scholar 

  34. Zárate R, Hermosin B, Cantos M, Troncoso A (1997) J Chem Ecol 23:2059–2066

    Article  Google Scholar 

  35. Kursinszki L, Hank H, László I, Szőke É (2005) J Chromatogr A 1091:32–39. doi:10.1016/j.chroma.2005.07.016

    Article  CAS  Google Scholar 

  36. Rbeida O, Christiaens B, Hubert Ph, Lubda D, Boos K-S, Crommen J, Chiap P (2005) J Pharm Biomed 36:947–954

    Article  CAS  Google Scholar 

  37. Ceyhan T, Kartal M, Altun ML, Tülemis F, Cevheroglu S (2001) J Pharm Biomed 25:399–406

    Article  CAS  Google Scholar 

  38. Niño J, Gallego CM, Correa YM, Mosquera OM (2003) Plant Cell Tissue Organ 74:289–291

    Article  Google Scholar 

  39. Chen H, Chen Y, Du P, Han F, Wang H, Zhang H (2006) J Pharm Biomed 40:142–150. doi:10.1016/j.jpba.2005.06.027

    Article  Google Scholar 

  40. Chen HX, Chen Y, Du P, Han FM (2007) Chromatographia 65:413–418. doi:10.1365/s10337-007-0187-9

    Article  CAS  Google Scholar 

  41. Oertel R, Richter K, Ebert U, Kirch W (2001) J Chromatogr B 750:121–128

    Article  CAS  Google Scholar 

  42. Abbara C, Bardot I, Cailleux A, Lallement G, Le Bouil A, Turcant A, Clair P, Diquet B (2008) J Chromatogr B 874:42–50. doi:10.1016/j.chromb.2008.08.027

    Article  CAS  Google Scholar 

  43. Steenkamp PA, Harding NM, van Heerden FR, van Wyk B-E (2004) Forensic Sci Int 145:31–39. doi:10.1016/j.forsciint.2004.03.011

    CAS  Google Scholar 

  44. Gaillard Y, Pepin G (1999) J Chromatogr B 733:181–229

    Article  CAS  Google Scholar 

  45. Moffat AC, Osselton MD, Widdop B (eds) (2003) Clarke’s analysis of drugs and poisons, 3rd edn. Pharmaceutical Press, London

Download references

Acknowledgments

The work was supported by the grants GVOP-3.2.1-0168, RET 008/2005, OTKA-NKTH NI-68863, OTKA K75717, OTKA F48815. Simkon Ltd. (Budapest, Hungary) and Sigma-Aldrich Ltd. (Budapest, Hungary) are thanked for lending the Ascentis Express C18 column.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Felinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boros, B., Farkas, Á., Jakabová, S. et al. LC-MS Quantitative Determination of Atropine and Scopolamine in the Floral Nectar of Datura Species. Chroma 71 (Suppl 1), 43–49 (2010). https://doi.org/10.1365/s10337-010-1524-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-010-1524-y

Keywords

Navigation