Skip to main content
Log in

Effects of excessive copper intake on hematological and hemorheological parameters

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Copper plays an important role in the structure and function of metalloproteins and in the absorption of iron. The present study deals with the effects of excessive copper intake on hematological and hemorheological parameters.

Drinking water containing 250 µg/mL copper for a period of 9 wk, Wistar albino rats showed increased erythrocyte count, blood viscosity, and hematocrit values (p<0.05) and lower hemoglobin (p<0.05) than controls fed a normal diet. The two groups also had differences in the erythrocyte deformability index.

The results suggest that excessive copper intake results in hematological and hemorheological changes affecting both the protein content of the erythrocyte membrane and heme synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. Georgopoules, A. Roy, M. J. Yonone-Lioy, R. E. Opiekun, and P. J. Lioy, Enviromental copper: its dynamics and human exposure issues, J. Toxicol. Environ. Health B 4, 341–394 (2001).

    Article  Google Scholar 

  2. R. Uauy, M. Oliveras, and M. Gonzales, Essentially of copper in humans, Am. J. Clin. Nutr. 67 (Suppl.) 952–959 (1988).

    Google Scholar 

  3. N. Tietz, Textbook of Clinical Chemitry, W. B. Saunders, Philadelphia pp. 965–985 (1981).

    Google Scholar 

  4. G. W. Evans, Copper homeostasis in the mammalian system, Physiol. Rev. 53(53), 535–570 (1973).

    PubMed  CAS  Google Scholar 

  5. W. M. Dunlap, G. W. James, and D. M. Hume, Anemia and neutropenia caused by copper deficiency, Ann. Intern. Med. 80, 470–476 (1974).

    PubMed  CAS  Google Scholar 

  6. G. E. Cartwright and M. N. Wintrobe, Copper metabolism in normal subjects, Am. J. Clin. Nutr. 14, 224–232 (1964).

    PubMed  CAS  Google Scholar 

  7. E. J. Underwood, Trace Elements in Human and Animal Nutrition, 4th ed., Academic P, New York, pp. 56–108 (1977).

    Google Scholar 

  8. P. N. Davis, L. C. Norris, and F. H. Kratzer, Interference of soybean proteins with the utilization of trace minerals, J. Nutr. 77, 217–223 (1962).

    PubMed  CAS  Google Scholar 

  9. W. W. Carlton and W. Handerson, Studies in chickens fed a copper deficient diet supplemented with ascorbic acid, reserpine and diethylstilbestrol, J. Nutr. 85, 67–72 (1965).

    PubMed  CAS  Google Scholar 

  10. C. H. Hill and B. Starcher, Effect of reducing agents on copper deficiency in the chick, J. Nutr. 85, 271–274 (1965).

    PubMed  CAS  Google Scholar 

  11. K. C. Weiss and M. C. Linder, Copper transport in rats involving a new plasma protein, Am. J. Phisiol. 249, E77-E88 (1985).

    CAS  Google Scholar 

  12. L. C. Bloomer and G. R. Lee, Normal hepatic copper metabolism, in Metals and the Liver, L. W. Powell, ed., Marcel Dekker, New York (1978).

    Google Scholar 

  13. G. Gregoriadis and T. Sourkes. Intracellular distribution of copper in the liver of the rat, Can. J. Biochem. 45, 1841–1851 (1967).

    Article  PubMed  CAS  Google Scholar 

  14. D. B. Milne and P. H. Weswig, Effect of supplementary copper on blood andliver copper-containing fractions in rats, J. Nutr. 95, 429–433 (1968).

    PubMed  CAS  Google Scholar 

  15. M. C. Linder and M. Hazegh Azam, Copper biochemistry and molecular biology, Am. J. Clin. Nutr. 63, 797–811 (1966).

    Google Scholar 

  16. N. Marceau and N. Aspin, The intracellular distribution of radio-copper derived from ceruloplasmin and from albumin, Biochem. Biophys. Acta. 328(2), 338–350 (1973).

    PubMed  CAS  Google Scholar 

  17. World Health Organization, Trace Elements in Human Nutrition and Health, Who, Geneva pp. 123–141 (1996).

    Google Scholar 

  18. J. T. Saari, A. M. Bode, and G. M. Dahlen, Defects of copper deficiency in rats are modified by dietary treatment that affect glycation, J. Nutr. 125, 2925–2934 (1995).

    PubMed  CAS  Google Scholar 

  19. K. A. Sukalski, T. P. La Berge, and W. T. Johnson, In vivo oxidative modification of erythrocyte membrane proteins in copper deficiency, Free Radical Biol. Med. 22(5), 835–842 (1997).

    Article  CAS  Google Scholar 

  20. E. Rock, E. Gueux, A. Mazur, C. Motta, and Y. Rayssiquier, Anemia in copper-deficient rats: role of alterations in erythrocyte membrane fluidity and oxidative damage, Am. J. Physiol. 269(5), 1245–1249 (1995).

    Google Scholar 

  21. T. M. Amin, J. A. Sirs, and P. Turner, Measurement of erythrocyte deformability using a stroboscopic recording centrifuge, Phys. Med. Biol. 28(Suppl.3), 269–275 (1983).

    Article  PubMed  CAS  Google Scholar 

  22. D. S. Erdinçler, Y. Karakoç, S. Toplan, S. Önen, A. Sukyasyan, T. Beger, et al. The effect of ginkgo biloba glycoside on blood viscosity and erythrocyte deformability, Clin. Hemorheology 16(3), 271–276 (1996).

    Google Scholar 

  23. J. D. Bauer, Viscosity of blood, in Gradwohl’s Clinical Laboratory Methods and Diagnosis, F. S. Reitman and A. C. Sonnenwirt, eds., Mosby, St. Louis, MO, pp. 492–493 (1970).

    Google Scholar 

  24. A. A. Famadu, Hemorheological changes and fibrinolytic activity in adult asthmatic patients with sickle cell trait (HbAS), Clin. Hemorheol. Microcirc. 19, 1–5 (1998).

    Google Scholar 

  25. A. Brown, and A. Taylor, Applications of a slotted quartz tube and flame atomic absorption spectrometry to the analysis of biological samples, Analyst 110, 579–582 (1985).

    Article  PubMed  CAS  Google Scholar 

  26. J. N. Arora and G. J. Gores, Role of metals in ischemic reperfusion injury, Semin. Liver Dis. 16(1), 28–38 (1996).

    Google Scholar 

  27. M. L. Shilsky, Wilson’s disease: genetic basis of copper toxicity and natural history, Semin. Liver Dis. 16(1), 83–95 (1996).

    Article  Google Scholar 

  28. I. Fridovich, Superoxide dismutases, Adv. Enzymol. Related Areas Mol. Biol. 41(0), 35–97 (1974).

    Article  CAS  Google Scholar 

  29. G. R. Lee and V. Herbert, Nutritional factors in the production and function of erythrocytes, in Wintrobe§ Clinical Hematology, 10th ed., G. R. Lee G., J. Foerster, J. Lukens, F. Paraskev, J. P. Greer, and G. M. Rodgers, eds., Williams & Wilkins, Baltimore, MD, Vol. I, pp. 228–266 (1999).

    Google Scholar 

  30. B. M. Myers, B. A. Hamilton, and M. L. Shilsky, Proliferation of hepatic lysosomes and autophagic vacuoles in the LEC rat, Hepatology 22, 373A (1995).

  31. K. Gwozdzinski, A spin label study of the action of cupric and mercuric ions on human red blood cells, Toxicology 65(3), 315–323 (1991).

    Article  PubMed  CAS  Google Scholar 

  32. Z. S. Jehan and D. B. Matlag, Metal induced changes in the erythrocyte membrane of rats, Toxicol. Lett. 78(2), 127–133 (1995).

    Article  PubMed  CAS  Google Scholar 

  33. D. Gelvan and P. Saltman, Different cellular targets for cupper and iron catalyzed oxidation observed using a copper-compatible thiobarbituric acid assay, Biochem. Biophys. Acta 1035(3), 353–360 (1990).

    PubMed  CAS  Google Scholar 

  34. A. S. Prasad, Trace Elements and Iron in Human Metabolism, Wiley, London, pp. 289–303 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özçelik, D., Toplan, S., Özdemir, S. et al. Effects of excessive copper intake on hematological and hemorheological parameters. Biol Trace Elem Res 89, 35–42 (2002). https://doi.org/10.1385/BTER:89:1:35

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:89:1:35

Index Entries

Navigation