Skip to main content
Log in

Copper, zinc, and selenium in whole blood and thyroid tissue of people with various thyroid diseases

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

We investigated the possible differences among the concentrations of copper, zinc, and selenium, and their mutual relations in the whole blood and thyroid tissue of patients with various thyroid disorders. Trace elements were determined by total-reflection X-ray fluorescence. The mean levels of these metals in blood as well as the mean Cu/Zn, Cu/Se, and Zn/Se ratios in the patients with thyroid cancer were significantly higher that in other patients and the control groups. However, the mean Zn and Se concentrations in the thyroid cancer tissue were significantly lower than in the thyroid tissue of other patients. In addition, the mean Cu/Zn and Cu/Se ratios in the thyroid cancer tissue were significantly higher than in the patients with other thyroid diseases. We confirm that the highest levels of copper and zinc as well as the Cu/Zn, Cu/Se, and Zn/Se ratios in the whole blood of the patients with thyroid cancer may suggest the progression of the proliferation process in the thyroid gland. We suggest that the low concentrations of zinc and selenium in the thyroid tissue confirm their participation in the carcinogenic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Flohe, J. R. Andreesen, R. Brigelius-Flohe, et al., Selenium, the element of the Moon, in life on earth, Life 49, 411–420 (2000).

    PubMed  CAS  Google Scholar 

  2. J. Köhrle, R. Brigelius-Flohe, A. Böck, et al., Selenium in biology: facts and medical perspectives, Biol. Chem. 381, 849–864 (2000).

    Article  Google Scholar 

  3. K. Overvad, Selenium and cancer, in Role of Trace Elements for Health Promotion and Disease Prevention, B. Sandström and P. Walter, eds., Bibl. Nutr. Dieta. Vol. 54, Karger, Basel, pp. 141–149 (1998).

    Chapter  Google Scholar 

  4. M. P. Rayman, The importance of selenium to human health, Lancet 356, 233–241 (2000).

    Article  PubMed  CAS  Google Scholar 

  5. M. Sanz Alaejos, F. Diaz Romero, and C. Diaz Romero, Selenium and cancer: some nutritional aspects, Nutrition 16, 376–383 (2000).

    Article  Google Scholar 

  6. M. Vinceti, S. Rovest, M. Bergomi, et al., The epidemiology of selenium and human cancer, Tumori 86, 105–118 (2000).

    PubMed  CAS  Google Scholar 

  7. P. J. Aggett and A. Favier, Zinc, Int. J. Vitam. Nutr. Res. 63(4), 301–307 (1993).

    PubMed  CAS  Google Scholar 

  8. J. Arnaud, Copper, Int. J. Vitam. Nutr. Res. 63(4), 308–311 (1993).

    PubMed  CAS  Google Scholar 

  9. J. van Dael and H. Deestro, Selenium, Int. J. Vitam. Nutr. Res. 63(4), 312–316 (1993).

    PubMed  Google Scholar 

  10. A. M. Viegas-Crespo, M. L. Pavão, O. Paulo, et al., Trace element status (Se, Cu, Zn) and serum lipid profile in Portuguese subjects of San Miguel Island from Azores’ archipelago, J. Trace Elements Med. Biol. 14, 1–5 (2000).

    Article  CAS  Google Scholar 

  11. I. Yücel, F. Arpaci, A. Özet, et al., Serum copper and zinc levels and copper/zinc ration in patients with breast cancer, Biol. Trace Element Res. 40, 31–38 (1994).

    Article  Google Scholar 

  12. C. Köksoy, G. O. Kavas, E. Akcil, et al., Trace elements and superoxide dismutase in benign and malignant breast disease, Breast Cancer Res. Treat. 45, 1–4 (1997).

    Article  PubMed  Google Scholar 

  13. J. Köhrle, Thyroid hormone deiodinase—a selenoenzyme family acting as gate keepers to thyroid hormone action, Acta Med. Austr. 23, 17–30 (1996).

    Google Scholar 

  14. J. Köhrle, Thyroid hormone deiodination in target tissue—a regulatory role for the trace element, Exp. Clin. Endocrinol. 102, 63–89 (1994).

    Article  PubMed  Google Scholar 

  15. A. Kralik, K. Eder, and M. Kirchgessner, Influence of zinc and selenium deficiency on parameters relation to thyroid hormone metabolism, Horm. Metab. Res. 28, 223–226 (1996).

    Article  PubMed  CAS  Google Scholar 

  16. M. J. Berry and P. R. Larsen, The role of selenium in thyroid hormone action, Endocr. Rev. 132, 207–219 (1992).

    Article  Google Scholar 

  17. J. Köhrle, M. Oertel, and M. Gross, Selenium supply regulates thyroid function, thyroid hormone synthesis and metabolism by altering the expression of the selenoenzymes type I 5′-deiodinase and glutathione peroxidase, Thyroidol. Clin. Exp. 4, 17–21 (1992).

    PubMed  Google Scholar 

  18. M. D. Chen, Y. M. Song, C. T. Tsou, et al., Leptin concentration and the Zn/Cu ration in plasma in women with thyroid disorder, Biol. Trace Element Res. 75, 99–105 (2000).

    Article  CAS  Google Scholar 

  19. P. Wobrauschek, Trends, applications and results in x-ray fluorescence analysis, J. Radiat. Nucl. Chem. 167, 433–444 (1993).

    Article  CAS  Google Scholar 

  20. U. Majewska, J. Braziewicz, D. Banaś, et al., An elemental correlation study in cancerous breast tissue by total reflection x-ray fluorescence, Biol. Trace Element Res. 60, 91–100 (1997).

    CAS  Google Scholar 

  21. U. Majewska, J. Braziewicz, D. Banaś, et al., Some aspects of statistical distribution of trace element concentrations in biomedical samples, Nucl. Instrum. Methods Phys. Res. B 150, 254–259 (1999).

    Article  CAS  Google Scholar 

  22. A. Kubala-Kukuś, J. Braziewicz, U. Majewska, et al., Influence of detection limit on the measured concentration distribution of trace elements. X-Ray Spectrom. 30, 348–352 (2001).

    Article  Google Scholar 

  23. A. N. Garg, V. Singh, R. G. Weginwar, et al., An elemental correlation study in cancerous and normal breast tissue with successive clinical stages by neutron activation analysis, Biol. Trace Element Res. 46, 185–201 (1994).

    CAS  Google Scholar 

  24. K. H. Ng, D. A. Bradley, L. M. Looi, et al., Differentiation of elemental composition of normal and malignant breast tissue by instrumental neutron activation analysis, Appl. Radiat. Isot. 44, 511–516 (1993).

    Article  PubMed  CAS  Google Scholar 

  25. M. Gerber, S. Richardson, R. Salkeld, et al., Antioxidants in female breast cancer patients, Cancer Invest. 91, 421–428 (1991).

    Google Scholar 

  26. F. Cavallo, M. Gerber, and E. Marrubini, Zinc and copper in breast cancer, Cancer 67, 738–745 (1991).

    Article  PubMed  CAS  Google Scholar 

  27. A. Zoboli, A case-control study on selenium, zinc and copper in plasma and hair of subjects affected by breast and lung cancer, Biol. Trace Element Res. 51, 23–30 (1996).

    Google Scholar 

  28. W. Buchinger, B. Leopold, P. Lind, et al., Changes in zinc level of serum, whole blood and red blood cells in thyroid disease, Wiener Klin. Wochenschr. 18, 619–621 (1988).

    Google Scholar 

  29. G. Saner, S. V. Baysal, E. Ünüvar, et al., Serum zinc, copper levels and copper/zinc ratios in infants with sepsis syndrome, J. Trace Elements Exp. Med. 13, 265–270 (2000).

    Article  CAS  Google Scholar 

  30. J. Kadrabova, A. Madaric, F. Podvinsky, et al., Plasma zinc, copper and copper/zinc ratio in intrinsic asthma, J. Trace Elements Med. Biol. 10, 50–53 (1996).

    CAS  Google Scholar 

  31. P. L. Leung and X. L. Li, Multielement analysis in serum of thyroid cancer patients before and after a surgical operation, Biol. Trace Element Res. 28, 223–226 (1996).

    Google Scholar 

  32. K. Aihara, Y. Nishi, S. Hatano, et al., Zinc, copper, magnase and selenium metabolism in thyroid disease, Am. J. Clin. Nutr. 40, 26–35 (1984).

    PubMed  CAS  Google Scholar 

  33. C. N. Schrauzer, Selenium. Mechanistic aspect of anticarinogenic action, Biol. Trace Element Res. 33, 51–62 (1992).

    CAS  Google Scholar 

  34. L. N. Vernie, M. De Vries, C. Benskhuijsen, et al., Selenium levels in blood and plasma and glutathione peroxidase activity in blood of breast cancer patients during adjutant treatment with cyclophosphamide, methotrexate and 5-fluorouracil, Cancer Lett. 18, 283–289 (1983).

    Article  PubMed  CAS  Google Scholar 

  35. J. Aaseth, H. Frey, E. Glatter, et al., Selenium concentration in the human thyroid gland, Biol. Trace Element Res. 24, 147–152 (1990).

    CAS  Google Scholar 

  36. D. Behne, A. Kyriakopoulos, C. Weiss-Nowak, et al., Newly found selenium containing proteins in the tissues of the rat, Biol. Trace Element Res. 55, 99–110 (1996).

    CAS  Google Scholar 

  37. G. N. Schrauzer, Anticarcinogenesis effects of selenium, Cell. Mol. Life Sci. 57, 1864–1873 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kucharzewski, M., Braziewicz, J., Majewska, U. et al. Copper, zinc, and selenium in whole blood and thyroid tissue of people with various thyroid diseases. Biol Trace Elem Res 93, 9–18 (2003). https://doi.org/10.1385/BTER:93:1-3:9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:93:1-3:9

Index Entries

Navigation