Skip to main content

Advertisement

Log in

Temporary deleterious mass mutations relate to originations of cockroach families

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Heritably transferred genome mutations extending phenotypic variability together with natural selection (alternatively with genetic drift, draft, stability, and passive selections) are the main conditions of species evolution. Intervals with high rates of detrimental mutations are virtually absent from the fossil record due to the difficulty of identifying them. Our evidence, based on living populations indicate that insect wing deformities represent heritable hypomorphic mutations that are similar to those observed in Chernobyl and Fukushima. Newly collected assemblages from two of the major diversification intervals, the Cretaceous (J/K or K1) Yixian Formation in China and Permian/Triassic (P/T) Poldars Formation in Russia, exhibit cockroach wing deformity rates of 27% and 42.5% (n = 120, 73), respectively. Wing deformity and principal, family rank origination rates (seven peaks each) correlate from the Mississippian/Pennsylvanian to the present (~ 320 Ma, n = 5059, r = 0.83, P = 0.005, rSpearman = 0.77), which is the first significant support for the association of detrimental mutations and evolution on the geological scale. It unexpectedly provides direct evidence for association of high-taxonomic rank changes and accumulation of mutations (which is neither trivial nor self-evident due to sophisticated patterns of gene flow), while this relationship is absent at species and genus levels. According to uncertainty of the numerical dating of non-marine sediments, a regular 62.05 ± 0.02 Ma periodicity of diversification and mass mutagenesis with the last peak at 3.95 ± 0.2 Ma (peaks possibly associated with origin and/or radiation of dinosaurs and frogs; birds and angiosperms; modern mammals; humans), is explanatory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen P.L., Xu F. & Xiao W. 2008. Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA. Cell. Res. 18 (1): 162–173. https://doi.org/10.1038/cr.2007.114

    Article  CAS  PubMed  Google Scholar 

  • Anisyutkin L.N. 2002. Notes on the cockroaches of the subfamilies Pycnoscelinae and Diplopterinae from South-East Asia with description of three new species (Dictyoptera: Blaberidae). Zoosystematica Rossica 10 (2): 351–359.

    Google Scholar 

  • Anisyutkin L.N. 2007. A new species of the genus Diploptera Saussure, 1864 from Borneo (Dictyoptera: Blaberidae: Diplopterinae). Zoosystematica Rossica 16 (2): 173–175.

    Google Scholar 

  • Anisyutkin L.N. & Gorochov A.V. 2008. A new genus and species of the cockroach family Blattulidae from Lebanese Amber (Dictyoptera, Blattina). Paleontol. J. 42 (1): 43–46. https://doi.org/10.1134/S0031030108010061

    Google Scholar 

  • Anisyutkin L.N. & Gröhn C. 2012. Novye tarakany (Dictyoptera: Blattina) iz Baltiĭskogo yantarya, s opisaniem novogo roda i vida: Stegoblatta irmgardgroehni [New cockroaches (Dictyopterra: Blattina) from Baltic amber, with the description of a new genus and species: Stegoblatta irmgardgroehni]. Trudy Zoologicheskogo Instituta RAS / Proceedings of the Zoological Institute RAS / 316 (3): 193–202.

    Google Scholar 

  • Archibald S.B. & Mathewes R.W. 2000. Early Eocene insects from Quilchena, British Columbia, and their paleoclimatic implications. Can. J. Zool. 78 (8): 1441–1462. https://doi.org/10.1139/cjz-78-8-1441

    Article  Google Scholar 

  • Aristov D.S. 2015. Insects from a new Ufimian Locality of Troitsa in the Perm Region, Russia. Paleontol. J. 49 (5): 496–500. https://doi.org/10.1134/S0031030115050032

    Article  Google Scholar 

  • Aristov D.S., Bashkuev A.S., Golubeva V.K., Gorochov A.V., Karasev E.V., Kopylov D.S., Ponomarenko A.G., Rasnitsyn A.P., Rasnitsyn D.A., Sinitshenkova N.D., Sukatsheva I.D. & Vassilenko D.V. 2013. Fossil Insects of the Middle and Upper Permian of European Russia. Paleontol. J. 47 (7): 641–832. https://doi.org/10.1134/S0031030113070010

    Article  Google Scholar 

  • Atri D. & Melott A.L. 2011. Biological implications of high-energy cosmic ray induced muon flux in the extragalactic shock model. Geophys. Res. Lett. 38 (19), L19203, 3 pp. https://doi.org/10.1029/2011GL049027

    Google Scholar 

  • Bai M., Beutel R.G., Klass K.-D., Zhang W.W., Yang X.K. & Wipfler B. 2016. †Alienoptera - A new insect order in the roach-mantodean twilight zone. Gondwana Res. 39: 317–326. https://doi.org/10.1016/j.gr.2016.02.002

    Article  Google Scholar 

  • Barbieri M. 2003. The Organic Codes. An Introduction to Semantic Biology. Cambridge Univ Press, 312 pp. ISBN: 0521531004

    Google Scholar 

  • Barna P. 2014. Low diversity cockroach assemblage from Chernovskie Kopi in Russia confirms deformations at J/K boundary. Biologia 69 (5): 651–675. https://doi.org/10.2478/s11756-014-0349-9

    Article  Google Scholar 

  • Barraclough T.G. & Savolainen V. 2001. Evolutionary rates and species diversity in flowering plants. Evolution 55 (4): 677–683. https://doi.org/10.1111/j.0014-3820.2001.tb00803.x

    Article  CAS  PubMed  Google Scholar 

  • Batygin K. & Brown M.E. 2016. Evidence for a distant giant planet in the Solar system. Astron. J. 151 (2): 22, 12 pp. https://doi.org/10.3847/0004-6256/151/2/22

    Article  Google Scholar 

  • Bekker-Migdisova E.E. 1961. Otryad Blattodea. Tarakanovye [Order Blattodea. Cockroach-like insects], 2, pp. 89–157. In: Rodendorf B.B., Bekker-Megdicova E.E., Martynova O.M. & Sharov A.G. (eds), Paleozoĭskoe nasekomye Kuznetskogo basseĭna [Paleozoic insects of the Kuznetsk Basin], Trudy Paleontologicheskogo Instituta Rossĭlskoĭ akademii nauk [Trans. Paleontol. Inst. AS SSSR], 85 (2), Nauka, Moscow, 705 pp.

    Google Scholar 

  • Bechly G. 2007. ‘Blattaria’: cockroaches and roachoids, pp. 239–249. In: Martill D., Bechly G. & Loveridge R.F. (eds), The Crato Fossil Beds of Brazil: Window into an Ancient World, Cambridge University Press, Cambridge, 674 pp. ISBN: 9780-521-85867-0

  • Benton M.J. 2004. Origin and relationships of Dinosauria, pp. 7–19. In: Weishampel D.B., Dodson P. & Osmolska H. (eds), The Dinosauria, Univ. California Press, Berkeley, 880 pp. ISBN: 0520941438, 9780520941434

    Google Scholar 

  • Benton M.J., Walker A.D. 2002. Erpetosuchus, a crocodile-like basal archosaur from the Late Triassic of Elgin, Scotland. Zool. J. Linn. Soc. 136 (1): 25–47. https://doi.org/10.1046/j.1096-3642.2002.00024.x

    Article  Google Scholar 

  • Béthoux O., Schneider J.W. & Klass K.-D. 2011. Redescription of the holotype of Phyloblatta gaudryi (Agnus, 1903) (Pennsylvanian; Commentry, France), an exceptionally well preserved stem-dictyopteran. Geodiversitas 33 (4): 625–635. https://doi.org/10.5252/g2011n4a4.

    Article  Google Scholar 

  • Bohn H., Picker M., Klass K.-D. & Colville J. 2010. A Jumping Cockroach from South Africa, Saltoblattella montistabularis, gen. nov., spec. nov. (Blattodea: Blattellidae). Arthropod Syst. Phylogeny 68 (1): 53–69.

    Google Scholar 

  • Bollati V. & Baccarelli V. 2010. Environmental epigenetics. Heredity 105: 105–112. https://doi.org/10.1038/hdy.2010.2

    Article  CAS  PubMed  Google Scholar 

  • Bourguignon T., Lo N., Cameron S.L., Sobotnik J., Hayashi Y., Shigenobu S., Watanabe D., Roisin Y., Miura T. & Evans T.A. 2015. The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol. Biol. Evol. 32 (2): 406–421. https://doi.org/10.1093/molbev/msu308.

    Article  CAS  PubMed  Google Scholar 

  • Breen M.S., Kemena C., Vlasov P.K., Notredame C. & Kondrashov F.A. 2012. Epistasis as the primary factor in molecular evolution. Nature 490: 535–538. https://doi.org/10.1038/nature11510

    Article  CAS  PubMed  Google Scholar 

  • Bulmer M.G. 1972. The genetic variability of polygenic characters under optimizing selection, mutation and drift. Genet. Res. 19 (1): 17–25. https://doi.org/10.1017/S0016672300

    Article  CAS  PubMed  Google Scholar 

  • Carr M. 2002. DNA structure dependent checkpoints as regulators of DNA repair. DNA Repair (Amst.) 1 (12): 983–994. https://doi.org/10.1016/S1568-7864(02)00165-9

    Google Scholar 

  • Castronovo F.P. 1999. Teratogen update: Radiation and Chernobyl. Teratology 60 (2): 100–106. https://doi.org/10.1002/(SICI)1096-9926(199908)60:2<100::AID-TERA14>3.0.CO;2-H

    Article  CAS  PubMed  Google Scholar 

  • Cavalli-Sforza L.L. 2002. Human genetic and linguistic diversity, pp. E37–E53. In: Pagel M. (ed.), Encyclopedia of Evolution, Vol. 1, Oxford Univ Press, 556 pp. ISBN: 0-19-514864-9. 0.1093/acref/9780195122008.001.0001

    Google Scholar 

  • Cave M.D. 1976. Absence of rDNA amplification in the uninucleolate oocyte of the cockroach Blattella germanica (Oorthoptera: Blattidae). J. Cell. Biol. 71 (1): 49–58. https://doi.org/10.1083/jcb.71.1.49

    Article  CAS  PubMed  Google Scholar 

  • Che Y.L., Wang D., Shi Y., Du X.H., Zhao Y.Q., Lo N. & Wang Z.Q. 2016. A global molecular phylogeny and timescale of evolution for Cryptocercus woodroaches. Mol. Phylogenet. Evol. 98: 201–209. https://doi.org/10.1016/j.ympev.2016.02.005

    Article  PubMed  Google Scholar 

  • Cheng X.F., Zhang L.P., Yu D.N., Storey K.B. & Zhang J.Y. 2016. The complete mitochondrial genomes of four cockroaches (Insecta: Blattodea) and phylogenetic analyses within cockroaches. Gene 586 (1): 115–122. https://doi.org/10.1016/j.gene.2016.03.057.

    Article  CAS  PubMed  Google Scholar 

  • Cifuentes-Ruiz P., Vršanský P., Vega F.J., Cevallos-Ferriz S.R.S., González-Soriano E. & Delgado de Jesús C.R. 2006. Terrestrial arthropods from the Cerro del Pueblo Formation (Campanian Late Cretaceous), Difunta Group, NE Mexico. Geol. Carpath. 57 (5): 347–354.

    Google Scholar 

  • Cohen K.M., Finney S., Gibbard P.L. 2013. International chronostratigraphic chart 2013/01. International Commision on Stratigraphy. https://doi.org/www.stratigraphy.org/ICSchart/ChronostratChart2013-01.pdf (accessed 06.08.2016)

    Google Scholar 

  • Cornette J.L., Lieberman B.S. & Goldstein R.H. 2002. Documenting a significant relationship between macroevolutionary origination rates and Phanerozoic pCO2 levels. Proc. Natl. Acad. Sci. U.S.A. 99 (12): 7832–7835. https://doi.org/10.1073/pnas.122225499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Y. & Ren D. 2013. Neotype designation for Sinonamuropteris ningxiaensis Peng, Hong et Zhang, 2005 (Grylloblattida, Late Carboniferous). Zootaxa 3694: 596–599. https://doi.org/10.11646/zootaxa.3694.6.7

    Article  PubMed  Google Scholar 

  • Čerňanský A. 2010. A revision of chamaeleonids from the Lower Miocene of the Czech Republic with description of a new species of Chamaeleo (Squamata, Chamaeleonidae). Geobios 43 (6): 605–613. https://doi.org/10.1016/j.geobios.2010.04.001

    Article  Google Scholar 

  • Davis M., Hut P. & Muller R.A. 1984. Extinction of species by periodic comet showers. Nature 308: 715–717. https://doi.org/10.1038/308715a0

    Article  Google Scholar 

  • Ding Q.H., Zhang L.D., Guo S.Z., Zhang C.J., Peng Y.D., Jia B., Chen S.W. & Xing D.H. 2001. The stratigraphic sequence and fossil bearing horizon of the Yixian Formation in western Liaoning, China. Geology and Resources 10 (4): 193–198. [in Chinese with English abstract]

    Google Scholar 

  • Djernaes M., Klass K.-D., Picker M.D. & Damgaard J. 2012. Phylogeny of cockroaches (Insecta, Dictyoptera, Blattodea), with placement of aberrant taxa and exploration of out-group sampling. Sys. Entomol. 37 (1): 65–83. https://doi.org/10.1111/j.1365-3113.2011.00598.x

    Article  Google Scholar 

  • Djernaes M., Klass K.D. & Eggleton P. 2015. Identifying possible sister groups of Cryptocercidae plus Isoptera: A combined molecular and morphological phylogeny of Dictyoptera. Molec. Phylogenet. Evol. 84: 284–303. https://doi.org/10.1016/j.ympev.2014.08.019

    Article  PubMed  Google Scholar 

  • Dmitriev V.J. & Ponomarenko A.G. 2002. Dynamics of insect taxonomic diversity, Chapter 3.1. pp. 325–330. In: Rasnitsyn A. P & Quicke D.L.J. (eds), History of Insects, Kluwer, Dodrecht, 516 pp. ISBN: 1-4020-0026-X

  • Dubrovsky E.B., Dretzen G. & Bellard M. 1994. The Drosophila broad-complex regulates developmental changes in transcription and chromatin structure of the 67 B heat-shock gene cluster. J. Mol. Biol. 241 (3): 353–362. https://doi.org/10.1006/jmbi.1994.1512

    Article  CAS  PubMed  Google Scholar 

  • Eldredge N. & Gould S.J. 1972. Punctuated equilibria: an alternative to phyletic gradualism, Chapter 5, pp. 82–115. In: Schopf T.J.M. (ed.), Models in Paleobiology, Freeman, Cooper & Company, San Francisco, 250 pp. ISBN-10: 0877353255, ISBN-13: 978-0877353256

  • Eo S.H. & DeWoody J.A. 2010. Evolutionary rates of mitochondrial genomes correspond to diversification rates and to contemporary species richness in birds and reptiles. Proc. Roy. Soc. Ser. B Biol. Sci. Lond. 277 (1700): 3587–3592. https://doi.org/10.1098/rspb.2010.0965.

    Article  CAS  Google Scholar 

  • Esnault C., Cornelis G., Heidmann O. & Heidmann T. 2013. Differential evolutionary fate of an ancestral primate endogenous retrovirus envelope gene, the EnvV Syncytin, captured for a function in placentation. PLoS Genetics 9 (3): e1003400. https://doi.org/10.1371/journal.pgen.1003400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans S.E. 2003. At the feet of the dinosaurs: the origin, evolution and early diversification of squamate reptiles (Lepidosauria: Diapsida). Biol. Rev. 78: 513–551. https://doi.org/10.1017/S1464793103006134

    Article  PubMed  Google Scholar 

  • Evans S.E. & Borsuk-B Ontheiałynicka M. 2009. The Early Triassic stem-frog Czatkobatrachus from Poland. Palaeontol. Pol. 65: 79–105.

    Google Scholar 

  • Evans K.L. & Gaston K.J. 2005. Can the evolutionary-rates hypothesis explain species-energy relationships? Funct. Ecol. 19 (6): 899–915. https://doi.org/10.1111/j.1365-2435.2005.01046.x

    Article  Google Scholar 

  • Flégr J. 1998. On the “Origin” of natural selection by means of speciation. Riv. Biol. — Biol. Forum 91: 291–304.

    Google Scholar 

  • Flégr J. 2006. Zamrzlá evoluce aneb je to jinak pane Darwin [Frozen Evolution. Or, that’s not the way it is, Mr. Darwin]. Academia, Praha, 328 pp. ISBN: 978-80-200-1526-6

    Google Scholar 

  • Flégr J. 2015. Evoluční tárí aneb o původů rodů. Academia, Praha, 404 pp. ISBN: 978-80-200-2481-7

    Google Scholar 

  • Foote M. 2000. Originations and extinction components of taxonomic diversity: General problems. Paleobiology 26 (sp. 4): 74–102. https://doi.org/10.1666/0094-8373(2000)26[74:OAECOT]2.0.CO;2

    Article  Google Scholar 

  • Friedberg E.C., Wagner R. & Radman M. 2002. Specialized DNA polymerases, cellular survival, and the genesis of mutations. Science 296 (5573): 162–165. https://doi.org/10.1126/science.1070236

    Google Scholar 

  • Fujiyama I. 1973. Mesozoic insect fauna of East Asia. Part I. Introduction and Upper Triassic faunas. Bull. Natl. Sci. Mus. Tokyo C 16 (2): 331–391.

    Google Scholar 

  • Gao T, Shih C., Engel M.S. & Ren D. 2016. A new xyelotomid (Hymenoptera) from the Middle Jurassic of China displaying enigmatic venational asymmetry. BMC Evol. Biol. 16: 155. https://doi.org/10.1186/s12862-016-0730-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao G.Q. & Shubin N.H. 2003. Earliest known crown-group salamanders. Nature 422: 422–428. https://doi.org/10.1038/nature01491

    Article  CAS  Google Scholar 

  • Gillooly J.F., Allen A.P., West G.B. & Brown J.H. 2005. The rate of DNA evolution: Effects of body size and temperature on the molecular clock. Proc. Natl. Acad. Sci. USA 102 (11): 140–145. https://doi.org/10.1073/pnas.0407735101

    Article  CAS  PubMed  Google Scholar 

  • Gillman L.N., Keeling D.J., Gardner R.C. & Wright S.D. 2010. Faster evolution of highly conserved DNA in tropical plants. J. Evol. Biol. 23 (6): 1327–1330. https://doi.org/10.1111/j.1420-9101.2010.01992.x.

    Article  CAS  PubMed  Google Scholar 

  • Godefroit P., Cau A., Hu D.Y., Escuillié F., Wu W. & Dyke G. 2013. A Jurassic avialan dinosaur from China resolves the early phylogenetic history of birds. Nature 498: 359–362. https://doi.org/10.1038/nature12168

    Article  CAS  PubMed  Google Scholar 

  • Goldie X., Lanfear R. & Bromham L. 2011. Diversification and the rate of molecular evolution: no evidence of a link in mammals. BMC Evol. Biol. 11: 286. https://doi.org/10.1186/1471-2148-11-286

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorokhov A.V. 2007. New and little known orthopteroid insects (Polyneoptera) from fossil resins: Communication 2. Paleontol. J. 41 (2): 156–166. 10.1134

    Article  Google Scholar 

  • Gould S.J. & Eldredge N. 1993. Punctuated equilibrium comes of age. Nature 366: 223–227. https://doi.org/10.1038/366223a0

    Article  CAS  PubMed  Google Scholar 

  • Gradstein F.M., Ogg J.G. & Smith A.G. (eds). 2005. A Geologic Time Scale 2004 (With Geologic Time Scale Poster), 610 pp. ISBN-13: 9780521786737, ISBN-10: 0521786738)

    Book  Google Scholar 

  • Gradstein F.M., Ogg J.G., Schmitz M.D. & Ogg G.M. (eds). 2012. The Geologic Time Scale 2012. 1st ed. Amsterdam, Elsevier, 1176 pp. ISBN: 978-0-44-459425-9.

    Google Scholar 

  • Griffiths A.J.F., Wessler S.R., Lewontin R.C. & Carrol S.B. 2008. Introduction to Genetic Analysis. 10. Freeman and Co, New York, 838 pp. ISBN: 0716768879, 9780716768876

    Google Scholar 

  • Grimaldi D. & Engel M. 2005. Evolution of Insects. Cambridge Univ Press, New York, 772 pp. ISBN-10: 0521821495, ISBN-13: 978-0521821490

    Google Scholar 

  • Guo Y., Béthoux O., Gu J. & Ren D. 2013. Wing venation homologies in Pennsylvanian ‘cockroachoids’ (Insecta) clarified thanks to a remarkable specimen from the Pennsylvanian of Ningxia (China). J. Syst. Palaeontol. 11 (1): 41–46. https://doi.org/10.1080/14772019.2011.637519

    Article  Google Scholar 

  • Hesse-Honegger C. 2002. Heteroptera. Das Schöne und das Andere oder Bilder einer mutierenden Welt. Steidl Verlag, Göttingen, 312 pp. ISBN-10: 3882433604, ISBN-13: 9783882433609

    Google Scholar 

  • Hiyama A., Nohara C., Kinjo S., Taira W., Gima S., Tanahara A. & Otaki J.M. 2012. The biological impacts of the Fukushima nuclear accident on the pale grass blue butterfly. Sci. Rep. 2: 570. https://doi.org/10.1038/srep00570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hmich D., Schneider J.W., Saber H. & El Wartiti M. 2003. First Permocarboniferous insects (blattids) from North Africa (Morocco) - implications on paleobiogeography and palaeo-climatology. Freiberger Forschungshefte C 499 (11): 117–134.

    Google Scholar 

  • Hmich D., Schneider J.W., Saber H. & El Wartiti M. 2005. Spiloblattinidae (Insecta, Blattida) from the Carboniferous of Morocco, North Africa - Implications for Biostratigraphy, pp. 111–114. In: Lucas S.G. & Zeigler K.E. (eds), The Nonmarine Permian, New Mexico Museum of Natural History and Science Bulletin No. 30, 362 pp.

    Google Scholar 

  • Hmich D., Schneider J.W., Saber H., Voigt S. & El Wartiti M. 2006. New continental Carboniferous and Permian faunas of Morocco: implications for biostratigraphy, palaeobiogeography and palaeoclimate, pp. 297–324. In: Lucas S.G., Cassinis G., & Schneider J.W. (eds), Non-Marine Permian Biostratigraphy and Biochronology, Geological Society, London, Special Publications 265, 351 pp. https://doi.org/10.1144/GSL.SP.2006.265.01.01. ISBN-10: 1-86239-206-4, ISBN-13: 978-1-86239-206-9

    Google Scholar 

  • Hopkins H. 2014. A revision of the genus Arenivaga (Rehn) (Blattodea, Corydiidae), with descriptions of new species and key to the males of the genus. ZooKeys 384: 1–256. https://doi.org/10.3897/zookeys.384.6197

    Article  Google Scholar 

  • Hörnig M.K., Haug J.T. & Haug C. 2013. New details of Santanmantis axelrodi and the evolution of the mantodean morphotype. Palaeodiversity 6: 157–168.

    Google Scholar 

  • Huang J.-H., Lozano J. & Belles X. 2013. Broad-complex functions in postembryonic development of the cockroach Blattella germanica shed new light on the evolution of insect metamorphosis. Biochim. Biophys. Acta 1830 (1): 2178–2187. https://doi.org/10.1016/j.bbagen.2012.09.025.

    Article  CAS  PubMed  Google Scholar 

  • Huber P., McDonald N.G. & Olsen P.E. 2003. Early Jurassic insects from the Newark supergroup, Northeastern United States, pp. 206–223. In: LeTourneau P.M. & Olsen P.E. (eds), The Great Rift Valleys of Pangea in Eastern North America, Volume 2, Sedimentology, Stratigraphy, Paleontology, Columbia University Press, New York, 248 pp. ISBN: 0-231-12676-X, 9780231126762

    Google Scholar 

  • Iorio L 2009. Constraints on planet X/Nemesis from Solar System’s inner dynamics. Mon. Not. Roy. Astron. Soc. 400 (1): 346–353. https://doi.org/10.1111/j.1365-2966.2009.15458.x

    Article  Google Scholar 

  • Irisarri I., San Mauro D., Abascal F., Ohler A., Vences M. & Zardoya R. 2012. The origin of modern frogs (Neobatrachia) was accompanied by acceleration in mitochondrial and nuclear substitution rates. BMC Genomics 13: 626. https://doi.org/10.1186/1471-2164-13-626.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jablonski D., Belanger C., Berke S., Huang S., Krug A.Z., Roy K., Tomasovych A. & Valentine J.W. 2013. Out of the tropics, but how? Fossils, bridge species, and thermal ranges in the dynamics of the marine latitudinal diversity gradient. Proc. Natl. Acad. Sci. USA 110 (26): 10487–10494. https://doi.org/10.1073/pnas.1308997110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janecka J., Chowdhary B. & Murphy W. 2012. Exploring the correlations between sequence evolution rate and phenotypic divergence across the Mammalian tree provides insights into adaptive evolution. J. Biosci. 37 (5): 897–909. https://doi.org/10.1007/s12038-012-9254-y

    Article  PubMed  Google Scholar 

  • Jeon M.G. & Park Y.C. 2015. The complete mitogenome of the wood-feeding cockroach Cryptocercus kyebangensis (Blattodea: Cryptocercidae) and phylogenetic relations among cockroach families. Animal Cells and Systems 19 (6): 432–438. https://doi.org/10.1080/19768354.2015.1105866

    Article  Google Scholar 

  • Ji Q., Liu Y.G. & Jiang X.J. 2011. On the Lower Cretaceous in Yixian county of Jinzhou city, Western Liaoning, China. Acta Geol. Sin.-Eng. Ed. 85 (2): 437–442. https://doi.org/10.1111/j.1755-6724.2011.00411.x

    Article  CAS  Google Scholar 

  • Ji Q., Luo Z.X., Yuan C.X., Wible J.R. Zhang J.P. & Georgi J.A. 2002. The earliest known eutherian mammal. Nature 416: 816–822. https://doi.org/10.1038/416816a

    Article  CAS  PubMed  Google Scholar 

  • Johnson L.J. & Tricker P.J. 2010. Epigenomic plasticity within populations: its evolutionary significance and potential. Heredity 105: 113–121. https://doi.org/10.1038/hdy.2010.25

    Article  CAS  PubMed  Google Scholar 

  • Kaidanov L.Z., Bolshakov V.N., Tzygvintzev P.N. & Gvozdev V.A. 1991. The sources of genetic variability in highly inbred long-term selected strains of Drosophila melanogaster. Genetica 85 (1): 73–78. https://doi.org/10.1007/BF00056108

    Article  CAS  PubMed  Google Scholar 

  • Kauffman S. 2004. Autonomous Agents, Part VI, Chapter 29, pp. 654–666. In: Barrow J.D., Davies P.C.W. & Harper C.L. Jr. (eds), Science and Ultimate Reality: Quantum Theory, Cosmology, and Complexity, Cambridge University Press, 742 pp. ISBN: 9780521831130

    Chapter  Google Scholar 

  • Kielan-Jaworowska Z., Cifelli R.L. & Luo Z.X. 2004. Mammals from the Age of Dinosaurs-origins, Evolution, and Structure. Columbia University Press, New York, 648 pp. ISBN-10: 0231119186, ISBN-13: 978-0231119184

    Book  Google Scholar 

  • Kikuchi R. 2010. External forces acting on the Earth’s climate: an approach to understanding the complexity of climate change. Energy & Environment 21 (8): 953–968. https://doi.org/10.1260/0958-305X.21.8

    Article  CAS  Google Scholar 

  • Kolbe S.E., Lockwood R. & Hunt G. 2011. Does morphological variation buffer against extinction? A test using veneroid bivalves from the Plio-Pleistocene of Florida. Paleobiology 37 (3): 355–368. https://doi.org/10.1666/09073.1

    Article  Google Scholar 

  • Krassilov V.A. 2003. Terrestrial Paleoecology and Global Change. Series: Russian Academic Monographs 1, Pensoft, Sofia, Moscow, 480 pp. ISBN: 9546421537

    Google Scholar 

  • Kunkel J.G. 2006. Are cockroaches resistant to radiation? https://doi.org/www.bio.umass.edu/biology/kunkel/cockroach_faq.html#Q5 (accessed 10.06.2006)

    Google Scholar 

  • Labandeira C. 1994. A compendium of fossil insect families. Milwaukee Public Museum Contributions in Biology and Geology 88: 1–87.

    Google Scholar 

  • Labandeira C. & Sepkoski J.J. 1993. Insect diversity in the fossil record. Science 261: 310–315. https://doi.org/10.1126/science.11536548

    Article  CAS  PubMed  Google Scholar 

  • Lancaster L.T. 2010. Molecular evolutionary rates predict both extinction and speciation in temperate angiosperm lineages. BMC Evol. Biol. 10: 162. https://doi.org/10.1186/1471-2148-10-162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lande R. 1976. The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genet. Res. 26 (3): 221–235. https://doi.org/10.1017/S0016672300016037

    Article  Google Scholar 

  • Lanfear R., Ho S.Y.W., Love D. & Bromham L. 2010. Mutation rate is linked to diversification in birds. Proc. Natl. Acad. Sci. USA 107 (47): 20423–20428. https://doi.org/10.1073/pnas.1007888107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S.W. 2014. New Lower Cretaceous basal mantodean (Insecta) from the Crato Formation (NE Brazil). Geol. Carpath. 65 (4): 285–292. https://doi.org/10.2478/geoca-2014-0019

    Article  Google Scholar 

  • Lee S.W. 2016. Taxonomic diversity of cockroach assemblages (Blattaria, Insecta) of the Aptian Crato Formation (Cretaceous, NE Brazil). Geol. Carpath. 67 (5): 433–450. https://doi.org/10.1515/geoca-2016-0027

    Google Scholar 

  • Legendre F., Nel A., Svenson G.J., Robillard T., Pellens R. & Grandcolas P. 2015. Phylogeny of Dictyoptera: dating the origin of cockroaches, praying mantises and termites with molecular data and controlled fossil evidence. PLoS One 10 (7): e0130127. https://doi.org/10.1371/journal.pone.0130127

    Article  CAS  Google Scholar 

  • Li X. & Wang Z. 2015. A taxonomic study of the beetle cockroaches (Diploptera Saussure) from China, with notes on the genus and species worldwide (Blattodea: Blaberidae: Diplopterinae). Zootaxa 4018 (1): 35–56. https://doi.org/10.11646/zootaxa.4018.1.2.

    Article  PubMed  Google Scholar 

  • Liang J.-H., Vršanský P. & Ren D. 2012. Variability and symmetry of a Jurassic nocturnal predatory cockroach (Blattida: Raphidiomimidae). Rev. Mex. Cienc. Geol. 29 (2): 411–421.

    Google Scholar 

  • Liang J.-H., Yinxia G., Ren D. & Shih C. 2010. Blattodea — Survivors of the Fittest, Chapter 8, pp. 73–83. In: Ren D., Shih C., Gao T. & Yao Y.Y. (eds), Silent stories - Insect Fossil Treasures from Dinosaur Era of the Northeastern China, Science Press, Beijing, 322 pp. ISBN-10: 7030281918, ISBN-13: 9787030281913

    Google Scholar 

  • Lucas S.G., Barrick J.E., Krainer K. & Schneider J.W. 2013. The Carboniferous-Permian boundary at Carrizo Arroyo, Central New Mexico, USA. Stratigraphy 10 (3): 153–170.

    Google Scholar 

  • Lucańas C.C. & Lit I.L. Jr. 2016. Cockroaches (Insecta, Blattodea) from caves of Polillo Island (Philippines), with description of a new species. Subterranean Biol. 19: 51–64. https://doi.org/10.3897/subtbiol.19.9804

    Article  Google Scholar 

  • Luhman K.L. & Sheppard S.S. 2014. Characterization of high proper motion objects from the wide-field infrared survey explorer. Astrophys. J. 787 (2): 126–126. https://doi.org/10.1088/0004-637X/787/2/126

    Article  CAS  Google Scholar 

  • Lukashevich E.D. 2011. New nematocerans (Insecta: Diptera) from the Late Jurassic of Mongolia. Paleontol. J. 45 (6): 620–628. https://doi.org/10.1134/S0031030111060098

    Article  Google Scholar 

  • Martínez-Delclós X. 1993. Blátidos (Insecta, Blattodea) del Cretácico Inferior de Espańa. Familias Mesoblattinidae, Blattulidae y Poliphagidae. Boletín Geológico y Minero 104 (5): 52–74

    Google Scholar 

  • Martins-Neto R.G., Mancuso A. & Gallego O.F. 2005. La fauna de insectos triásicos de la Argentina. Blattoptera de la Formación Los Rastros (cuenca del Bermejo) provincia de La Rioja [The Triassic insect fauna from Argentina. Blattoptera from the Los Rastros Formation (Bemejo Basin), La Rioja Province.] Ameghiniana 42 (4): 705–723.

    Google Scholar 

  • Martynov A.V. 1937. Liasovye nasekomye Shuraba I Kizil-Kin [Liassic insects from Shurab and Kisyl-Kiya], Part II. Blattodea. Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR 7 (1): 183–232.

    Google Scholar 

  • Mayr E. 1976. Evolution and the Diversity of Life. 3rd ed. Belknap Press of Harvard University Press, Cambridge, 721 pp. ISBN: 0674271041, 9780674271043

    Google Scholar 

  • Mayr G., Pohl B. & Peters D.S. 2005. A well-preserved Archaeopteryx specimen with theropod features. Science 310: 1483–1486. https://doi.org/10.1126/science.1120331

    Article  CAS  PubMed  Google Scholar 

  • McDonald J.F. 1995. Transposable elements - possible catalysts of organismic evolution. Trends Ecol. Evol. 10 (1–3): 123–126. https://doi.org/10.1016/S0169-5347(00)89012-6

    Article  CAS  PubMed  Google Scholar 

  • Medvedev M. & Melott A. 2006. The cosmogenic origin of the 62 Myr biodiversity oscillation. Astrobiology 6 (1): 240.

    Google Scholar 

  • Melott A.L. & Bambach R.K. 2010. Nemesis reconsidered. Mon. Not. Roy. Astron. Soc. 407 (1): L99–L102. https://doi.org/10.1111/j.1745-3933.2010.00913.x

    Article  Google Scholar 

  • Melott A.L. & Bambach R.K. 2011. A ubiquitous similar to 62-Myr periodic fluctuation superimposed on general trends in fossil biodiversity. II. Evolutionary dynamics associated with periodic fluctuation in marine diversity. Paleobiology 37 (3): 383–408. https://doi.org/10.1666/09055.1

    Article  Google Scholar 

  • Melott A.L. & Bambach R.K. 2013. Do periodicities in extinction with possible astronomical connections survive a revision of the geological timescale? Astroph. J. 773 (1): 6. https://doi.org/10.1088/0004-637X/773/1/6

    Google Scholar 

  • Melott A.L., Bambach R.K., Petersen K.D. & McArthur J.M. 2012. An ?60-million-year periodicity is common to marine 87Sr/86Sr, fossil biodiversity, and large-scale sedimentation: What does the periodicity reflect? J. Geol. 120 (2): 217–226. https://doi.org/10.1086/663877.

    Article  CAS  Google Scholar 

  • Mikó I., Copeland R.S., Balhoff J.P., Yoder M.J. & Deans A.R. 2014. Folding wings like a cockroach: A review of transverse wing folding ensign wasps (Hymenoptera: Evaniidae: Afrevania and Trissevania) PLoS One 9 (5): e94056. https://doi.org/10.1371/journal.pone.0094056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mikulíček P., Jandzik D., Fritz U., Schneider C. & Široký P. 2013. AFLP analysis shows high incongruence between genetic differentiation and morphology-based taxonomy in a widely distributed tortoise. Biol. J. Linn. Soc. 108 (1): 151–160. https://doi.org/10.1111/j.1095-8312.2012.01999.x

    Article  Google Scholar 

  • Mugat B., Brodu V., Kejzlarova-Lepesant J., Antoniewski C., Bayer C.A., Fristrom J.W. & Lepesant J.A. 2000. Dynamic expression of broad-complex isoforms mediates temporal control of an ecdysteroid target gene at the onset of Drosophila metamorphosis. Devel. Biol. 227 (1): 104–117. https://doi.org/10.1006/dbio.2000.9879

    Article  CAS  Google Scholar 

  • Nalepa C.A. 2015. Origin of termite eusociality: trophallaxis integrates the social, nutritional, and microbial environments. Ecol. Entomol. 40 (4): 323–335. https://doi.org/10.1111/een.12197

    Article  Google Scholar 

  • Nicholson D.B., Mayhew P.J. & Ross A.J. 2015. Changes to the fossil record of insects through fifteen years of discovery. PLoS One 10 (7): e0128554. https://doi.org/10.1371/journal.pone.0128554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nicholson D.B., Ross A.J. & Mayhew P.J. 2014. Fossil evidence for key innovations in the evolution of insect diversity. Proc. Roy. Soc. B 281 (1793): 20141823. https://doi.org/10.1098/rspb.2014.1823

    Article  Google Scholar 

  • Novozhenov Y.I. & Korobizyn N.M. 1972. Aberrativnaya izmenchivosf v prirodnykh populyatsiyakh nasekomykh [Aberrant variation in natural insect populations]. Zh. Obshch. Biol. 33 (3): 315–324.

    PubMed  Google Scholar 

  • Oružinský R. & Vršanský P. 2017. Cockroach forewing area and venation variabilities relate. Biologia 72: 813–817. https://doi.org/10.1515/biolog-2017-0090

    Article  Google Scholar 

  • Padian K. 1997. Origin of Dinosaurs, pp. 481–486. In: Currie P.J. & Padian K. (eds), Encyclopedia of Dinosaurs, Academic Press, New York, 869 pp. ISBN: 9780122268106

  • Papier F., Grauvogel-Stamm L. & Nel A. 1994 Subioblatta undulata n. sp., a new Blattodea (Subioblattidae Schneider) from the Upper Bunter (Anisian) of the Vosges Mountains (France). Morphology, systematics and affinities. Neues Jahrbuch fur Geologie und Paläontologie, Monatshefte 1994 (5): 277–290.

    Google Scholar 

  • Papier F. & Grauvogel-Stamm L. 1995. Les Blattodea du Trias: Le genre Voltziablatta n. gen. du Buntsandstein supérieur des Vosges (France) [The Triassic Blattodea: The genus Voltziablatta n. gen. from the Upper Bunter of the Vosges Mountains (France)]. Paleontographica A 235 (4–6): 141–162.

    Google Scholar 

  • Picker M., Colville J.F. & Burrows M. 2012. A cockroach that jumps. Biol. Lett. 8 (3): 390–392. https://doi.org/10.1098/rsbl.2011.1022

    Article  PubMed  Google Scholar 

  • Piton L.E. 1936. Les Orthopteres tertiaires d’Auvergne. Misc. Entomol. 37: 77–79.

    Google Scholar 

  • Piton L.E. 1940. Paléontologie du gisement éocčne de Menat (Puy-de-Dôme) (flore et faune). Mémoires de la Société d’Histoire Naturelle d’Auvergne, Clermont-Ferrand 1: 1–303.

    Google Scholar 

  • Poinar G. & Brown A.E. 2017. An exotic insect Aethiocarenus burmanicus gen. et sp. nov. (Aethiocarenodea ord. nov., Aethiocarenidae fam. nov.) from mid-Cretaceous Myanmar amber. Cretaceous Res. 72: 100–104. https://doi.org/10.1016/j.cretres.2016.12.011

    Article  Google Scholar 

  • Ponomarenko A.G. 2016. Insects during the time around the Permian-Triassic crisis. Paleontol. J. 50 (2): 174–186. https://doi.org/10.1134/S0031030116020052

    Article  Google Scholar 

  • Potgieter M., Ferreira S. & Du Toit S. 2011. Galactic cosmic rays in the dynamic heliosphere, pp. 441–453. In: Giani S., Leroy C. & Rancoita P.G. (eds), Cosmic Rays For Particle and Astroparticle Physics Book Series: Astroparticle Particle Space Physics Radiation Interaction Detectors and Medical Physics Application Vol. 6, 668 pp. ISBN: 978-981-4329-02-6

    Article  CAS  Google Scholar 

  • Qin J. & Li L. 2003. Molecular anatomy of the DNA damage and replication checkpoints. Radiat. Res. 159 (2): 139–148. https://doi.org/10.1667/0033-7587(2003)159[0139:MAOTDD]2.0.CO2

    Article  CAS  PubMed  Google Scholar 

  • Rage J.C. & Roček Z. 1989. Redescription of Triadobatrachus massinoti (Piveteau, 1936) an anuran amphibian from the Early Triassic. Palaeontographica A 206 (1–3): 1–16.

    Google Scholar 

  • Ramel C. 1989. The nature of spontaneous mutations. Mutat. Res. 212 (1): 33–42. https://doi.org/10.1016/0027-5107(89)90020-1

    Article  CAS  PubMed  Google Scholar 

  • Rasnitsyn A.P. 2002. Protsess evolyutsii i metodologya sistematiki [Evolutionary process and methodology of systematics]. Ňr. Russ. Entomol. Obshch. [Proc. Russ. Entomol. Soc.] 73: 1–108.

    Google Scholar 

  • Rasnitsyn A.P., Bashkuev A.S., Kopylov D.S., Lukashevich E.D., Ponomarenko A.G., Popov J.A., Rasnitsyn D.A., Ryzhkova O.V., Sidorchuk E.A., Sukatsheva I.D. & Vorontsov D.D. 2016. Sequence and scale of changes in the terrestrial biota during the Cretaceous (based on materials from fossil resins). Cretaceous Res. 61: 234–255. https://doi.org/10.1016/j.cretres.2015.12.025

    Article  Google Scholar 

  • Rasnitsyn A.P. & Quicke D.L.J. (eds). 2002. History of Insects. Kluwer Academic Publishers, New York, Boston, Dordrecht, London, Moscow, 517 pp. ISBN: 978-1-4020-0026-3

    Book  Google Scholar 

  • Raup D.M. & Sepkoski J.J. Jr. 1982. Mass extinctions in the marine fossil record. Science 215: 1501–1503. https://doi.org/10.1126/science.215.4539.1501

    Article  CAS  PubMed  Google Scholar 

  • Reddy G.P.V. & Chippendale G.M. 1972. Observations on the nutritional requirements of the northwestern corn borer Diatraea grandiosella. Entomol. Exp. Appl. 15 (1): 51–60. https://doi.org/10.1111/j.1570-7458.1972.tb02083.x

    Article  CAS  Google Scholar 

  • Rifkin S.A., Houle D., Kim J. & White K.P. 2005. A mutation accumulation assay reveals a broad capacity for rapid evolution of gene expression. Nature 438: 220–223. https://doi.org/10.1038/nature04114

    Article  CAS  PubMed  Google Scholar 

  • Ross A.J. 2001. The Purbeck and Wealden cockroaches and their potential use in biostratigraphy. Thesis (Ph.D.), University of Brighton.

    Google Scholar 

  • Ross A.J. 2012. Testing decreasing variability of cockroach forewings through time using four Recent species: Blattella germanica, Polyphaga aegyptiaca, Shelfordella lateralis and Blaberus craniifer, with implications for the study of fossil cockroach forewings. Insect Sci. 19 (2): 129–142. https://doi.org/10.1111/j.1744-7917.2011.01465.x

    Article  Google Scholar 

  • Russell P.J. 2002. IGenetics. Benjamin Cummings, San Francisco, 828 pp. ISBN: 0805345531 9780805345537

    Google Scholar 

  • Sendi H. & Azar D. 2017. New aposematic and presumably repellent bark cockroach from Lebanese amber. Cretaceous Res. 72: 13–17. https://doi.org/10.1016/j.cretres.2016.11.013

    Article  Google Scholar 

  • Sereno P.C. 1999. The evolution of dinosaurs. Science 284: 2137–2147. https://doi.org/10.1126/science.284.5423.2137

    Article  CAS  PubMed  Google Scholar 

  • Shaviv N.J. 2003. The spiral structure of the Milky Way, cosmic rays, and ice age epochs on Earth. New Astronomy 8 (1): 39–77. https://doi.org/10.1016/S1384-1076(02)00193-8

    Article  Google Scholar 

  • Shaviv N.J. 2005. On the link between cosmic rays and terrestrial climate. Int. J. Mod. Phys. A 20: 6662–6665. https://doi.org/10.1142/S0217751X05029733

    Article  CAS  Google Scholar 

  • Shaviv N.J. & Veizer J. 2003. Celestial driver of Phanerozoic climate? GSA Today 13 (7): 4–10.

    Article  Google Scholar 

  • Shcherbakov D.E. 2008. On Permian and Triassic insect faunas in relation to biogeography and the Permian-Triassic crisis. Paleontol. J. 42 (1): 15–31. https://doi.org/10.1134/S0031030108010036

    Google Scholar 

  • Shcherbakov D.E. 2013. Permian ancestors of Hymenoptera and Raphidioptera. Zookeys 358: 45–67. https://doi.org/10.3897/zookeys.358.6289

    Article  Google Scholar 

  • Shrivastav M., De Haro L.P. & Nickoloff J.A. 2008. Regulation of DNA double-strand break repair pathway choice. Cell. Res. 18 (1): 134–147. https://doi.org/10.1038/cr.2007.111

    Article  CAS  PubMed  Google Scholar 

  • Shubin N.H. & Jenkins F.A. Jr. 1995. An Early Jurassic jumping frog. Nature 377: 49–52. https://doi.org/10.1038/377049a0

    Article  CAS  Google Scholar 

  • Schmied H. 2009. Cockroaches (Blattodea) from the middle Eocene of Messel (Germany). Diploma thesis, University of Bonn, 81 pp.

    Google Scholar 

  • Schneider J.W. 1977. Zur Variabilität der Flügel paläozoischer Blattodea (Insecta), Teil I. Freiberger Forschungshefte C 326: 87–105.

    Google Scholar 

  • Schneider J.W. 1978a. Zur Variabilität der Flügel paläozoischer Blattodea (Insecta), Teil II. Freiberger Forschungshefte C 334: 21–39.

    Google Scholar 

  • Schneider J.W. 1978b. Zum Taxonomie und Biostratigraphie der Blattodea (Insecta) des Karbon und Perm der DDR. Freiberger Forschungshefte C 340: 1–152.

    Google Scholar 

  • Schneider J.W. 1978c. Revision der Poroblattinidae (Insecta, Blattodea) des europäischen und nordamerikanischen Oberkarbon und Perm. Freiberger Forschungshefte C 342: 55–66.

    Google Scholar 

  • Schneider J.W. 1980a. Zur Entomofauna des Jungpaläozoikums der Boskovicer Furche (CSSR), Teil I: Mylacridae (Insecta, Blattodea). Freiberger Forschungshefte C 357: 43–55.

    Google Scholar 

  • Schneider J.W. 1980b. Zur Taxonomie der jungpaläozoischen Neorthroblattinidae (Insecta, Blattodea). Freiberger Forschungshefte C 348: 31–39.

    Google Scholar 

  • Schneider J.W. 1983. Die Blattodea (Insecta) des Paläozoikums, Teil 1: Systematik, Ökologie und Biostratigraphie. Freiberger Forschungshefte C 382: 107–146.

    Google Scholar 

  • Schneider J.W. 1984. Die Blattodea (Insecta) des Paläozoikums, Teil 2: Morphogenese der Flügelstrukturen und Phylogenie. Freiberger Forschungshefte C 391: 5–34.

    Google Scholar 

  • Schneider J.W., Lucas S.G. & Barrick J. 2013. The Early Permian age of the Dunkard Group, Appalachian basin, U.S.A., based on spiloblattinid insect biostratigraphy. Int. J. Coal Geol. 119 (SI): 88–92. https://doi.org/10.1016/j.coal.2013.07.019

    Article  CAS  Google Scholar 

  • Schneider J.W., Lucas S.G. & Rowland J.M. 2004. The Blattida (Insecta) fauna of Carrizo Arroyo, New Mexico — Biostratigraphic link between marine and nonmarine Pennsylvanian/Permian boundary profiles, pp. 247–261. In: Lucas S.G. & Zeigler K.E. (eds), Carboniferous-Permian Transition at Carrizo Arroyo, Central New Mexico. New Mexico Museum of Natural History and Science, Bulletin No. 25, 300 pp.

    Google Scholar 

  • Schneider J.W. & Werneburg R. 1993. Neue Spiloblattinidae (Insecta, Blattodea) aus dem Oberkarbon und Unterperm von Mitteleuropa sowie die Biostratigraphie des Rotliegend. Veroff. Naturhist. Mus. Schleusingen 7/8: 31–52.

    Google Scholar 

  • Schneider J.W. & Werneburg R. 2006. Insect biostratigraphy of the European late Carboniferous and early Permian, pp. 325–336. In: Lucas S.G., Cassinis G. & Schneider J.W. (eds), Nonmarine Permian Biostratigraphy and Biochronology, Geological Society, London, Special Publications 265, 352 pp. ISBN: 1-86239-206-4, 978-1-86239-206-9

    Article  Google Scholar 

  • Schwarzbach M. 1939. Die älteste Insektenflügel. Bemerkungen zu einem oberschlesischen Funde. Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereines N.F. 1939: 28–30.

    Google Scholar 

  • Signor P.W. & Lipps J.H. 1982. Sampling bias, gradual extinction patterns, and catastrophes in the fossil record, pp. 291–296. https://doi.org/10.1130/SPE190-p291. In: Silver L.T. & Schultz P.H. (eds), Geological Implications of Impacts of Large Asteroids and Comets on the Earth, Geological Society of America, Special Paper 190, 546 pp. ISBN: 9780813721903. https://doi.org/10.1130/SPE190

  • Sinitshenkova N.D. 2000. Novye podenky iz verkhnemezozoĭskogo zabaĭkal’skogo mesonakhozhdeniyab Chernovskie Koli (Insecta: Ephemerida = Ephemeroptera) [New mayflies from the Upper Mesozoic Transbaikalian locality Chernovskie Kopi (Insecta: Ephemerida = Ephemeroptera)]. Paleontol. J. 34: 63–69.

    Google Scholar 

  • Sinitza S.M. 1995. Chernovskiĭ paleontologocheskiĭ zapovednik [Chernovskii Paleontological Reserve]. Vest. Khiin. Politech. Univ. [Jubilee. Ed. Bull. Chita Polytech. Inst. Mosk. Gos. Univ.] 1: 70–84.

    Google Scholar 

  • Šmídová L. & Lei X. 2017. The earliest amber-recorded type cockroach family was aposematic (Blattaria: Blattidae). Cretaceous Res. 72: 189–199. https://doi.org/10.1016/j.cretres.2017.01.008

    Article  Google Scholar 

  • Solórzano Kraemer M.M. 2007. Systematic, palaeoecology, and palaeobiogeography of the insect fauna from Mexican amber. Palaeontographica A 282 (1–6): 1–133. https://doi.org/10.1127/pala/282/2007/1

    Google Scholar 

  • Sosov R.F 1955. Theoretical significance of mutation of microorganisms; consideration on publication of S.N. Muromtsev’s book, Variability of microorganisms in the problem of immunity, 1953. Zh. Mikrobiol. Epidemiol. Immunobiol. 12: 3–8. PMID: 13300910

    Google Scholar 

  • Stindl R. 2014. The telomeric sync model of speciation: specieswide telomere erosion triggers cycles of transposon-mediated genomic rearrangements, which underlie the salutatory appearance of nonadaptive characters. Naturwissenschaften 101: 163–186. https://doi.org/10.1007/s00114-014-1152-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukatsheva I.D. & Vassilenko D.V. 2011. Caddisflies from Chernovskie Kopi (Jurassic/Cretaceous of Transbaikalia). Zoosymposia 5: 434–438.

    Google Scholar 

  • Svensmark H. 1998. Influence of Cosmic Rays on Earth’s Climate. Phys. Rev. Lett. 81 (22): 5027–5030. https://doi.org/10.1103/Phys-RevLett.81.5027

    Article  CAS  Google Scholar 

  • Taberlet P., Zimmermann N.E., Englisch T., Tribsch A., Holderegger R., Alvarez N., Niklfeld H., Coldea G., Mirek Z., Moilanen A., Ahlmer W., Marsan P.A., Bona E., Bovio M., Choler P., Cieślak E., Colli L., Cristea V., Dalmas J.P., Frajman B., Garraud L., Gaudeul M., Gielly L., Gutermann W., Jogan N., Kagalo A.A., Korbecka G., Küpfer P., Lequette B., Letz D.R., Manel S., Mansion G., Marhold K., Martini F., Negrini R., Nińo F., Paun O., Pellecchia M., Perico G., Piękoś-Mirkowa H., Prosser F., Puşcaş M., Ronikier M., Scheuerer M., Schneeweiss G.M., Schönswetter P., Schratt-Ehrendorfer L., Schüpfer F., Selvaggi A., Steinmann K., Thiel-Egenter C., van Loo M., Winkler M., Wohlgemuth T., Wraber T., Gugerli F., IntraBioDiv Consortium & Vellend M. 2012. Genetic diversity in widespread species is not congruent with species richness in alpine plant communities. Ecol. Lett. 15 (12): 1439–1448. https://doi.org/10.1111/ele.12004.

    Article  PubMed  Google Scholar 

  • Tolley K.A., Tilbury C.R., Measey G.J., Menegon M., Branch W.R. & Matthee C.A. 2011. Ancient forest fragmentation or recent radiation? Testing refugial speciation models in chameleons within an African biodiversity hotspot. J. Biogeogr. 38 (9): 1748–1760. https://doi.org/10.1111/j.1365-2699.2011.02529.x

    Article  Google Scholar 

  • Townsend T. & Larson A. 2006. Molecular phylogenetics and mitochondrial genomic evolution in the Chamaeleonidae (Reptilia, Squamata). Molec. Phylogenet. Evol. 23 (1): 22–36. https://doi.org/10.1006/mpev.2001.1076

    Article  Google Scholar 

  • Trujillo C.A. & Sheppard S.S. 2014. A Sedna-like body with a perihelion of 80 astronomical units. Nature 507: 471–474. https://doi.org/10.1038/nature13156

    Article  CAS  PubMed  Google Scholar 

  • Vassilenko D.V. 2005a. Damages on mesozoic plants from the Transbaikalian locality Chernovskie Kopi. Paleontol. J. 39 (6): 54–59.

    Google Scholar 

  • Vassilenko D.V. 2005b. New damselflies (Odonata: Synlestidae, Hemiphlebiidae) from Mesozoic Transbaikalian locality of Chernovskie Kopi. Paleontol. J. 39 (3): 55–58.

    Google Scholar 

  • Vd’ačný P., Rajter Ľ., Shazib S.U.A., Jang S.W. & Shin M.K. 2017. Diversification dynamics of rhynchostomatian ciliates: the impact of seven intrinsic traits on speciation and extinction in a microbial group. Scientific Reports 7. https://doi.org/10.1038/s41598-017-09472-y

  • Vidal N., Rage J.C., Couloux A. & Hedges S.B. 2009. Snakes (Serpentes), pp. 390–397. In: Hedges S.B. & Kumar S. (eds), The Timetree of Life, Oxford University Press, New York, 572 pp. ISBN: 9780199535033

    Google Scholar 

  • Vidlička L., Vršanský P., Kúdelová T., Kúdela M., Deharveng L. & Hain M. 2017. New genus and species of cavernicolous cockroach (Blattaria, Nocticolidae) from Vietnam. Zootaxa 4232 (3): 361–375. https://doi.org/10.11646/zootaxa.4232.3.5

    Article  Google Scholar 

  • Vishnyakova V.N. 1964. Dopolnitel’nye znaki krovenosnykh sosudov na perednikh kryl’yakh novykh tarakanov verchneĭ yury [Additional characters of wing venation in forewings of a new Upper Jurassic cockroach]. Paleontol. J. 1964 (1): 82–87.

    Google Scholar 

  • Vishnyakova V.N. 1968. Mezozoĭskie tarakany s naruzhnym yaĭtseladom i osobennosti ikh razmnozhniya (Blattodea) [Mesozoic cockroaches with external ovipositor and peculiarities of their reproduction], pp. 55–86. In: Rohdendorf B.B. (ed.), Yurskie nasekomye Karatau [Jurassic Insects of Karatau], Nauka, Moscow, 252 pp.

    Google Scholar 

  • Vishnyakova V.N. 1973. Novye tarakany (Insecta: Blattodea) iz verkhneyurskikh otlozheniĭ khrebta Karatau [New cockroaches (Insecta: Blattodea) from the Upper Jurassic of Karatau mountains]. Doklady na 24. Jezhegodnom chtenii pamyati N.A. Kholodkowskogo, pp. 64–77.

    Google Scholar 

  • Vishnyakova V.N. 1998. Tarakany (Insecta, Blattodea) iz triasovogo mestonakhozhdeniya Madygen, Srednyaya Aziya [Cockroaches (Insecta, Blattodea) from the Triassic of the Madygen, Central Asia], Paleontol. Zh. 5: 69–76.

    Google Scholar 

  • Visscher H., Looy C.V., Collinson M.E., Brinkhuis H., van Konijnenburg-van Cittert J.H.A., Kürschner W.M. & Sephton M.A. 2004. Environmental mutagenesis during the end-Permian ecological crisis. Proc. Natl. Acad. Sci. USA 101 (35): 12952–12956. https://doi.org/10.1073/pnas.0404472101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vršanský P. 1997. Piniblattella gen. nov. - the most ancient genus of the family Blattellidae (Blattodea) from the Lower Cretaceous of Siberia. Entomol. Probl. 28 (1): 67–79.

    Google Scholar 

  • Vršanský P. 1999. The Blattaria Fauna of the Lower Cretaceous of Baissa in Transbaikalian Siberia. Diploma Thesis, Comenius University, Bratislava.

    Google Scholar 

  • Vršanský P. 2000. Decreasing variability — from the Carboniferous to the Present! (Validated on Independent Lineages of Blattaria). Paleontol. J. 34 (Suppl. 3): 374–379.

    Google Scholar 

  • Vršanský P. 2002. Origin and the Early Evolution of Mantises. Amba Projekty 6: 1–16.

    Google Scholar 

  • Vršanský P. 2003a. Unique assemblage of Dictyoptera (Insecta-Blattaria, Mantodea, Isoptera, Mantodea) from the Lower Cretaceous of Bon Tsagaan Nuur in Mongolia. Entomol. Probl. 33 (1-2): 119–151.

    Google Scholar 

  • Vršanský P. 2003b. Umenocoleoidea - an amazing lineage of aberrant insects (Insecta, Blattaria). Amba Projekty 7 (1): 1–32.

    Google Scholar 

  • Vršanský P. 2004. Transitional Jurassic/Cretaceous cockroach massemblage (Insecta, Blattaria) from the Shar-Teg in Mongolia. Geol. Carpath. 55 (6): 457–468.

    Google Scholar 

  • Vršanský P. 2005. Mass mutations of insects at the Jurassic/Cretaceous boundary? Geol. Carpath. 56 (6): 473–781.

    Google Scholar 

  • Vršanský P. 2008. New blattarians and a review of dictyopteran assemblages from the Lower Cretaceous of Mongolia. Acta Palaeontol. Pol. 53 (1): 129–136. https://doi.org/10.4202/app.2008.0109

    Article  Google Scholar 

  • Vršanský P. 2009. Albian cockroaches (Insecta, Blattida) from French amber of Archingeay. Geodiversitas 31 (1): 73–98. https://doi.org/10.5252/g2009n1a7

    Article  Google Scholar 

  • Vršanský P. 2010. Cockroach as the earliest eusocial animal. Acta. Geol. Sin. - Engl. Ed. 84 (4): 793–808. https://doi.org/10.1111/j.1755-6724.2010.00261.x

    Article  Google Scholar 

  • Vršanský P. & Ansorge J. 2007. Lower Jurassic cockroaches (Insecta: Blattaria) from Germany and England. Afr. Invertebr. 48 (1): 103–126.

    Google Scholar 

  • Vršanský P. & Aristov D. 2012. Enigmatic Late Permian cockroaches from Isady, Russia (Blattida: Mutoviidae fam. n.). Zootaxa 3247: 19–31. https://doi.org/10.5281/zenodo.213150

    Article  Google Scholar 

  • Vršanský P. & Aristov D. 2014. Termites from the Jurassic/Cretaceous boundary; evidence for the longevity of their earliest genera. Eur. J. Entomol. 111 (1): 137–141. https://doi.org/10.14411/eje.2014.014

    Article  Google Scholar 

  • Vršanský P. & Bechly G.N. 2015. New predatory cockroaches (Insecta: Blattaria: Manipulatoridae fam.n.) from the Upper Cretaceous Myanmar amber. Geol. Carpath. 66 (2): 133–138. https://doi.org/10.1515/geoca-2015-0015

    Article  Google Scholar 

  • Vršanský P., Cifuentes-Ruiz P., Vidlička L., Ciampor F. Jr. & Vega F.J. 2011. Afro-Asian cockroach from Chiapas amber and the lost Tertiary American entomofauna. Geol. Carpath. 62 (5): 463–475. https://doi.org/10.2478/v10096-011-0033-8

    Article  Google Scholar 

  • Vršanský P., Liang J.-H. & Ren D. 2009. Advanced morphology and behaviour of extinct earwig-like cockroaches (Blattida: Fuziidae). Geol. Carpath. 60 (6): 449–462. https://doi.org/10.2478/v10096-009-0033-0

    Article  Google Scholar 

  • Vršanský P., Liang J.-H. & Ren D. 2012. Malformed cockroach (Insecta: Blattida: Liberiblattinidae) from the Middle Jurassic of Daohugou in Inner Mongolia, China. Orient. Insects 46 (1): 12–18. https://doi.org/10.1080/00305316.2012.675482

    Article  Google Scholar 

  • Vršanský P. & Makhoul E. 2013. Mieroblattina pacis gen. et sp. n. — Upper Cretaceous cockroach (Blattida: Mesoblattinidae) from Nammoura limestone of Lebanon, pp. 167–172. In: Azar D., Engel M., Jarzembowski E., Krogmann L., Nel A. & Santiago-Blay J. (eds), Insect Evolution in an Ambiferous and Stone Alphabet, Proceedings of the 6th International Congress on Fossil Insects, Arthropods and Amber, Brill, Leiden, 210 pp. ISBN13: 9789004210707

    Google Scholar 

  • Vršanský P., Oružinský R., Barna P., Vidlička L. & Labandeira C. 2014. Native Ectobius (Blattaria: Ectobiidae) from the Early Eocene Green River formation of Colorado and its reintroduction to North America 49 million years later. Ann. Am. Entomol. Soc. 107 (1): 28–36. https://doi.org/10.1603/AN13042

    Article  Google Scholar 

  • Vršanský P.V., Šmídová L., Valaška D., Barna P., Vidlička L., Takáč P., Pavlik L., Kúdelová T., Karim T.S., Zelagin D. & Smith D. 2016. Origin of origami cockroach reveals long-lasting (11 Ma) phenotype instability following viviparity. Sci. Nat. 103 (9–10): 78. https://doi.org/10.1007/s00114-016-1398-4

    Article  CAS  Google Scholar 

  • Vršanský P., Vidlička L’., Barna P., Bugdaeva Z. & Markevich V. 2013. Paleocene origin of the cockroach families Blaberidae and Corydiidae: Evidence from Amur River region of Russia. Zootaxa 3635 (2): 117–126. https://doi.org/10.11646/zootaxa.3625.2.2

    Article  PubMed  Google Scholar 

  • Vršanský P., Vidlička L., Čiampor F. Jr. & Marsh F. 2012. Derived, still living cockroach genus Cariblattoides (Blattida: Blattellidae) from the Eocene sediments of Green River in Colorado, USA. Insect Sci. 19 (2): 143–152. https://doi.org/10.1111/j.1744-7917.2010.01390.x

    Article  Google Scholar 

  • Waddington C.H. 1942. Canalization of development and the inheritance of acquired characters. Nature 150: 563–565. https://doi.org/10.1038/150563a0

    Article  Google Scholar 

  • Waddington C.H. 1959. Canalization of development and genetic assimilation of acquired characters. Nature 183: 1654–1655. https://doi.org/10.1038/1831654a0

    Article  CAS  PubMed  Google Scholar 

  • Wang C.C., Wang Z.Q. & Che Y.L. 2016. Protagonista lugubris, a cockroach species new to China and its contribution to the revision of genus Protagonista, with notes on the taxonomy of Archiblattinae (Blattodea, Blattidae). ZooKeys 574: 57–73. https://doi.org/10.3897/zookeys.574.7111

    Article  Google Scholar 

  • Wang C.D. 2013. Nuurcala obesa sp. n. (Blattida, Caloblattinidae) from the Lower Cretaceous Yixian Formation in Liaoning Province, China. Zookeys 318: 35–46. https://doi.org/10.3897/zookeys.318.5514

    Article  Google Scholar 

  • Wang T.-T., Liang J.-H. & Ren D. 2007a. Variability of Habroblattula drepanoides gen. et. sp. nov. (Insecta: Blattaria: Blattulidae) from the Yixian Formation in Liaoning, China. Zootaxa 1443: 17–27. https://doi.org/10.5281/zenodo.176061

    Article  Google Scholar 

  • Wang T.-T., Liang J.-H., Ren D. & Shi C. 2007b. New Mesozoic cockroaches (Blattaria: Blattulidae) from Jehol Biota of western Liaoning in China. Ann. Zool. 57 (3): 483–495.

    Google Scholar 

  • Wang X., Shi Y., Wang Z. & Che Y. 2014a. Revision of the genus Salganea Stål (Blattodea, Blaberidae, Panesthiinae) from China, with descriptions of three new species. ZooKeys 412: 59–87. https://doi.org/10.3897/zookeys.412.7134

    Article  Google Scholar 

  • Wang X.D., Wang Z.G. & Che Y.L. 2014b. A taxonomic study of the genus Panesthia (Blattodea, Blaberidae, Panesthiinae) from China with descriptions of one new species, one new subspecies and the male of Panesthia antennata. ZooKeys 466: 53–75. https://doi.org/10.3897/zookeys.466.8111

    Article  Google Scholar 

  • Wang Y., Ren D. & Shih C. 2007c. New discovery of Palaeontinid fossils from the Middle Jurassic in Daohugou, Inner Mongolia (Homoptera, Palaeontinidae). Science in China Series D: Earth Sciences 50 (4): 481–486 https://doi.org/10.1007/s11430-007-0029-5

    Article  CAS  Google Scholar 

  • Wang Z.Q. & Che Y.L. 2013. Three new species of cockroach genus Symploce Hebard, 1916 (Blattodea, Ectobiidae, Blattellinae) with redescriptions of two known species based on types from Mainland China. ZooKeys 337: 1–18. https://doi.org/10.3897/zookeys.337.5770

    Article  Google Scholar 

  • Webster M. 2007. A Cambrian peak in morphological variation within trilobite species. Science 317: 499–502. https://doi.org/10.1126/science.1142964

    Article  CAS  PubMed  Google Scholar 

  • Wei T.T. & Ren D. 2013. Completely preserved cockroaches of the family Mesoblattinidae from J/K Yixian Formation, China. Geol. Carpath. 64 (4): 291–304. https://doi.org/10.2478/geoca-2013-0021

    Article  Google Scholar 

  • Weissert H. & Mohr H. 1996. Late Jurassic climate and its impact on carbon cycling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 122 (1–4): 27–43. https://doi.org/10.1016/0031-0182(95)00088-7

    Article  Google Scholar 

  • Weterings E. & Chen D.J. 2008. The endless tale of nonhomologous end-joining. Cell Res. 18 (1): 114–124. https://doi.org/10.1038/cr.2008.3

    Article  CAS  PubMed  Google Scholar 

  • Willis K.J., Bennett K.D. & Birks H.J.B. 2009. Variability in thermal and UV-B energy fluxes through time and their influence on plant diversity and speciation. J. Biogeogr. 36 (9): 1630–1644. https://doi.org/10.1111/j.1365-2699.2009.02102.x

    Article  Google Scholar 

  • Winterton S.L. 2006. Aberrant wing venation in the green lacewing Apochrysa lutea (Walker) (Neuroptera: Chrysopidae: Apochrysinae). Austral. Entomol. 33 (3): 143–146.

    Google Scholar 

  • Yang W. & Li S.G. 2008. Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning: Implications for lithospheric thinning of the North China Craton. Lithos 102 (1–2): 88–117. https://doi.org/10.1016/j.lithos.2007.09.018

    Article  CAS  Google Scholar 

  • Yang W., Li S.G. & Jiang B.Y. 2007. New evidence for Cretaceous age of the feathered dinosaurs of Liaoning: zircon U-PbSHRIMP dating of the Yixian Formation in Sihetun, northeast China. Cretaceous Res. 28 (2): 177–182. https://doi.org/10.1016/j.cretres.2006.05.011

    Article  Google Scholar 

  • Zhang Z., Schneider J.W. & Hong Y. 2013. The most ancient roach (Blattodea): a new genus and species from the earliest Late Carboniferous (Namurian) of China, with a discussion of the phylomorphogeny of early blattids. J. Syst. Paleontol. 11 (1): 27–40. https://doi.org/10.1080/14772019.2011.634443

    Article  Google Scholar 

  • Zherikhin V.V. 1987. Biocoenotic regulation and evolution. Paleontol. J. 21 (1): 12–19.

    Google Scholar 

  • Zherikhin V.V., Mostovski M.B., Vrsansky P., Blagoderov V.A. & Lukashevich E.D. 1999. The unique Lower Cretaceous locality Baissa and other contemporaneous fossil insect sites in North and West Transbaikalia, pp. 185–192. In: Vršanský P (ed.), Proc 1st Palaeoentomol Conf, Moscow 1998, Amba projekty, Bratislava.

  • Żyła D., Wegierek P., Owocki K. & Niedźwiedzki G. 2013. Insects and crustaceans from the latest Early-early Middle Triassic of Poland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 371: 136–144. https://doi.org/10.1016/j.palaeo.2013.01.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Vršanský.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vršanský, P., OruŘinský, R., Aristov, D. et al. Temporary deleterious mass mutations relate to originations of cockroach families. Biologia 72, 886–912 (2017). https://doi.org/10.1515/biolog-2017-0096

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2017-0096

Key words

Navigation