Skip to main content
Log in

Ultrasonic-induced morphological change of micro/nanodeposits and current change in electrochemical migration

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

To examine the influence of ultrasonic irradiation on electrochemical migration (ECM), the morphology of micro/nanodeposits and current change were studied. The morphology of deposits synthesized by ECM varied with the types of ultrasonic irradiation: continuous or pulsed irradiation generates only particles or deposits composed of wires, dendrites, and particles. The measured ECM current change over time concludes that both mechanical and sonochemical effects contributed to the morphological change of deposits. Shock waves by cavitation mechanically formed the fragmented deposits and the sonochemical effect decreases the ionic concentration corresponding to decreasing current, inhibiting the formation of wires and dendritic deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  1. G.T. Kohman, H.W. Hermance, and G.H. Downes: Silver migration in electrical insulation. Bell Syst. Tech. J. 34, 1115 (1955).

    Article  CAS  Google Scholar 

  2. S. Fukaya, T. Aoki, Y. Kimura, and M. Saka: Enhanced fabrication of hybrid Cu–Cu2O nanostructures on electrodes using electrochemical migration. Mech. Eng. Lett. 4, 17 (2018).

    Article  Google Scholar 

  3. T. Nakakura and M. Saka: Fabrication of large-scale Ag micro/nanostructures using electrochemical migration. Micro Nano Lett. 13, 923 (2018).

    Article  CAS  Google Scholar 

  4. T. Aoki, Y. Li, and M. Saka: Morphology control of hybrid Cu–Cu2O nano-structures fabricated by electrochemical migration. Mater. Lett. 236, 420 (2019).

    Article  CAS  Google Scholar 

  5. S. Yang, J. Wu, and A. Christou: Initial stage of silver electrochemical migration degradation. Microelectron. Reliab. 46, 1915 (2006).

    Article  CAS  Google Scholar 

  6. D. Minzari, F.B. Grumsen, M.S. Jellesen, P. Møller, and R. Ambat: Electrochemical migration of tin in electronics and microstructure of the dendrites. Corros. Sci. 53, 1659 (2011).

    Article  CAS  Google Scholar 

  7. X. Zhong, G. Zhang, Y. Qiu, Z. Chen, and X. Guo: Electrochemical migration of tin in thin electrolyte layer containing. Corros. Sci. 74, 71 (2013).

    Article  CAS  Google Scholar 

  8. B. Medgyes: Electrochemical migration of Ni and ENIG surface finish during environmental test contaminated by NaCl. J. Mater. Sci.: Mater. Electron. 28, 18578 (2017).

    CAS  Google Scholar 

  9. P. Yi, K. Xiao, K. Ding, C. Dong, and X. Li: Electrochemical migration behavior of copper-clad laminate and electroless nickel/immersion gold printed circuit boards under thin electrolyte layers. Materials 10, 137 (2017).

    Article  Google Scholar 

  10. X. Zhong, L. Chen, B. Madgyes, Z. Zhang, S. Gao, and L. Jalab: Electrochemical migration of Sn and Sn solder alloys: a review. RSC Adv. 7, 28186 (2017).

    Article  CAS  Google Scholar 

  11. T. Sakai, H. Enomoto, K. Torigoe, H. Sakai, and M. Abe: Surfactant-and reducer-free synthesis of gold nanoparticles in aqueous solutions. Colloids Surf. A Physicochem. Eng. Asp. 347, 18 (2008).

    Article  Google Scholar 

  12. T. Sakai, H. Enomoto, H. Sakai, and M. Abe: Hydrogen-assisted fabrication of spherical gold nanoparticles through sonochemical reduction of tetrachloride gold(III) ions in water. Ultrason. Sonochem. 21, 946 (2014).

    Article  CAS  Google Scholar 

  13. A. Gupta and R. Srivastava: Zinc oxide nanoleaves: a scalable disperser-assisted sonochemical approach for synthesis and an antibacterial application. Ultrason. Sonochem. 41, 47 (2018).

    Article  CAS  Google Scholar 

  14. T.-W. Chen, U. Rajaji, S.-M. Chen, and R.J. Ramalingam: Rapid sono-chemical synthesis of silver nano-leaves encapsulated on iron pyrite nanocomposite: an excellent catalytic application in the electrochemical detection of herbicide (Acifluorfen). Ultrason. Sonochem. 54, 90 (2019).

    Article  CAS  Google Scholar 

  15. K.-G. Liu, A.R. Abbasi, A. Azadbakht, M.-L. Hu, and A. Morsali: Deposition of silver nanoparticles on polyester fiber under ultrasound irradiations. Ultrason. Sonochem. 34, 12 (2017).

    Google Scholar 

  16. D. Tang and G. Zhang: Ultrasonic-assistant fabrication of cocoon-like Ag/AgFeO2 nanocatalyst with excellent plasmon enhanced visible-light photocatalytic activity. Ultrason. Sonochem. 37, 208 (2017).

    Article  CAS  Google Scholar 

  17. J. Wang, J. Fan, J. Li, X. Wu, and G. Zhang: Ultrasound assisted synthesis of Bi2NbO5F/rectorite composite and its photocatalytic mechanism insights. Ultrason. Sonochem. 48, 404 (2018).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by JSPS KAKNEHI Grant-in-Aid for Scientific Research (B) No. 17H03139.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Kimura.

Supplementary materials

Supplementary materials

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.135.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endo, Y., Kimura, Y. & Saka, M. Ultrasonic-induced morphological change of micro/nanodeposits and current change in electrochemical migration. MRS Communications 9, 1331–1334 (2019). https://doi.org/10.1557/mrc.2019.135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.135

Navigation