Skip to main content
Log in

Thermal Conductivity of Amorphous Indium Zinc Oxide Thin Films

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The thermal conductivity of amorphous indium zinc oxide (IZO) thin films was measured by the 3ω method. Three IZO films were prepared by dc magnetron sputtering method on Si substrate under different O2 flow ratios (O2 / [Ar+O2]) of 0%, 1%, and 5%. The thermal conductivity of IZO films decreases with an increase in O2 flow ratio, the values of the thermal conductivity were 3.4, 3.1 and 1.2 W m-1 K-1 for O2 flow ratios of 0%, 1%, and 5%, respectively. To investigate relationships among the thermal conductivity, the structure and other physical properties, we were carried out nanoindentation, Rutherford back scattering (RBS), electron spin resonance (ESR). The result of ESR measurements indicated that the amount of conduction electron in the IZO film decreases with increasing O2 flow ratio. Increase of O2 flow ratio reduces the amount of oxygen vacancies for providing free electrons. Therefore, decreasing thermal conductivity with an increase in O2 flow ratio is attributed to decreasing conduction electrons as thermal carrier. On the other hand, the chemical composition of IZO films is independent of O2 flow ratio. Furthermore, density, Young’s modulus and hardness also show little changes with increasing O2 flow ratio. Density, Young’s modulus and hardness are strongly associated with the internal structure. It is probable that influence of oxygen vacancies on the internal structure of IZO film is negligibly small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Yagi, K. Tamano, Y. Sato, N. Taketoshi, T. Baba, Y. Shigesato, J. Vac. Sci. Technol. A 23, 1180–1186 (2005).

    Article  CAS  Google Scholar 

  2. T. Ashida, A. Miyamura, Y. Sato, T. Yagi, N. Taketoshi, T. Baba, Y. Shigesato, J. Vac. Sci. Technol. A 25, 1178–1183 (2007).

    Article  CAS  Google Scholar 

  3. T. Ashida, A. Miyamura, N. Oka, Y. Sato, T. Yagi, N. Taketoshi, T. Baba, Y. Shigesato, J. Appl. Phys. 105, 073709 (2009).

    Article  Google Scholar 

  4. D. G. Cahill, Rev. Sci. Instrum. 61, 802–808 (1990).

    Article  CAS  Google Scholar 

  5. S.-M. Lee, D. G. Cahill, J. Appl. Phys. 81, pp.2590–2595 (1997).

    Article  CAS  Google Scholar 

  6. D. G. Cahill, A. Bullen, S.-M. Lee, High temperatures-high pressures 32, 135–142 (2000).

    Article  CAS  Google Scholar 

  7. T. Yamane, N. Nagai, S. Katayama, M. Todoki, J. Appl. Phys. 91, 9772–9776 (2002).

    Article  CAS  Google Scholar 

  8. N. Ito, Y. Sato, P. K. Song, A. Kaijo, K. Inoue, and Y. Shigesato, Thin Solid Films 496, 99–103 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endoh, R., Hirano, T., Takeda, M. et al. Thermal Conductivity of Amorphous Indium Zinc Oxide Thin Films. MRS Online Proceedings Library 1315, 1105 (2011). https://doi.org/10.1557/opl.2011.777

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2011.777

Navigation