Skip to main content
Log in

One-dimensional heterostructure: The selective decoration of single-walled carbon nanotube tips with metallic nanoparticles

  • Impact Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

A straightforward protocol is presented to covalently bond gold nanoparticles exclusively at the tips of single-walled carbon nanotubes. This approach exploits the sterical hindrance given by a polymer and surfactant, preventing the attachment of no functionalized gold nanoparticles onto the main nanotube body. These novel heterostructures have promising potential for applications in photonics and electronic devices.

Impact statement

One-dimensional structures and the straight-forward method to create them could set the stage for future fabrication of mechanically and electrically robust contact devices. The mechanical stability is essential for applying the presented one-dimensional heterojunctions as contacts in electronic devices and is of utmost importance for fabricating robust nanotube-metal composite materials. Eventually, three-dimensional metal-nanotube arrangements could be foreseen as exceptionally robust nanocomposites. Future research will evaluate multi-component systems containing several different types of structurally collaborating components (e.g., the combination of metal-semiconductor nanoparticles). The presented method may lead to the development of new composites, materials, and structures with functional properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

Available in the supporting information.

Code availability

Not applicable.

References

  1. S. Wind, D. Neumayer, J. Appenzeller, R. Martel, V. Derycke, M. Radosavljevic, P. Avouris, Microelectron. Eng. 64, 391 (2002). https://doi.org/10.1016/S0167-9317(02)00813-4

    Article  Google Scholar 

  2. S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, P. Avouris, Phys. Rev. Lett. 89, 2 (2002). https://doi.org/10.1103/PhysRevLett.89.106801

    Article  CAS  Google Scholar 

  3. P. Avouris, Chem. Phys. 281, 429 (2002). https://doi.org/10.1016/S0301-0104(02)00376-2

    Article  CAS  Google Scholar 

  4. P. Avouris, Acc. Chem. Res. 35, 1026 (2002). https://doi.org/10.1021/ar010152e

    Article  CAS  Google Scholar 

  5. P. Avouris, Proc. IEEE 2, 1043 (2003). https://doi.org/10.1109/JPROC.2003.818338

    Article  CAS  Google Scholar 

  6. A. Vijayaraghavan, F. Hennrich, N. Stürzl, M. Engel, M. Ganzhorn, M. Oron-Carl, C.W. Marquardt, S. Dehm, S. Lebedkin, M.M. Kappes, R. Krupke, ACS Nano 4(5), 2748 (2010). https://doi.org/10.1021/nn100337t

    Article  CAS  Google Scholar 

  7. A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai, Nature 424, 654 (2003). https://doi.org/10.1038/nature01797

    Article  CAS  Google Scholar 

  8. M.M. Shulaker, G. Hills, N. Patil, H. Wei, H.-Y. Chen, H.-S. Philip Wong, S. Mitra, Nature 501, 526 (2013)

    Article  CAS  Google Scholar 

  9. A. Naeemi, S. Member, J.D. Meindl, L. Fellow, IEEE Electron Device Lett. 26, 544 (2005)

    Article  Google Scholar 

  10. N. Srivastava, K. Banerjee, Proceedings of the 21st International VLSI Multilevel Interconnect Conference (VMIC) (2004), p. 398

  11. M.S. Wang, J.Y. Wang, Q. Chen, L.-M. Peng, Adv. Funct. Mater. 15, 1825 (2005). https://doi.org/10.1002/adfm.200500215

    Article  CAS  Google Scholar 

  12. S. Dag, O. Gülseren, S. Ciraci, T. Yildirim, Appl. Phys. Lett. 83, 3180 (2003). https://doi.org/10.1063/1.1616662

    Article  CAS  Google Scholar 

  13. A. Maiti, A. Ricca, Chem. Phys. Lett. 395, 7 (2004). https://doi.org/10.1016/j.cplett.2004.07.024

    Article  CAS  Google Scholar 

  14. M.P. Anantram, S. Datta, Y. Xue, Phys. Rev. B 61, 219 (2000)

    Google Scholar 

  15. J. Tersoff, Appl. Phys. Lett. 74, 2122 (1999). https://doi.org/10.1063/1.123776

    Article  CAS  Google Scholar 

  16. F. Leonard, J. Tersoff, Phys. Rev. Lett. 84, 4693 (2000)

    Article  CAS  Google Scholar 

  17. R. Seidel, M. Liebau, G.S. Duesberg, F. Kreupl, E. Unger, A.P. Graham, W. Hoenlein, W. Pompe, Nano Lett. 3, 965 (2003). https://doi.org/10.1021/nl034229z

    Article  CAS  Google Scholar 

  18. Y. Nosho, Y. Ohno, S. Kishimoto, T. Mizutani, Nanotechnology 17, 3412 (2006). https://doi.org/10.1088/0957-4484/17/14/011

    Article  CAS  Google Scholar 

  19. H.R. Farrah, R.F. Steinberg, IEEE Trans. Ind. Electron. 14, 69 (1967). https://doi.org/10.1109/T-ED.1967.15901

    Article  CAS  Google Scholar 

  20. G. Hills, M.G. Bardon, G. Doornbos, D. Yakimets, P. Schuddinck, R. Baert, D. Jang, L. Mattii, S.M.Y. Sherazi, D. Rodopoulos, R. Ritzenthaler, C.-S. Lee, A.V.-Y. Thean, I. Radu, A. Spessot,  P. Debacker, F. Catthoor, P. Raghavan, M.M. Shulaker, H.-S.P. Wong, S. Mitra, IEEE Trans. Nanotechnol. 17(6), 1259 (2018). https://doi.org/10.1109/TNANO.2018.2871841

    Article  CAS  Google Scholar 

  21. A.D. Franklin, M. Luisier, S.-J. Han, G. Tulevski, C.M. Breslin, L. Gignac, M.S. Lundstrom, W. Haensch, Nano Lett. 12, 758 (2012). https://doi.org/10.1021/nl203701g

    Article  CAS  Google Scholar 

  22. A.D. Franklin, Z. Chen, Nat. Nanotechnol. 5, 858 (2010). https://doi.org/10.1038/nnano.2010.220

    Article  CAS  Google Scholar 

  23. A. Attanzio, A. Sapelkin, F. Gesuele, A. van der Zande, W.P. Gillin, M. Zheng, M. Palma, Small 13(16), 1603042 (2017). https://doi.org/10.1002/smll.201603042

    Article  CAS  Google Scholar 

  24. G. Giovannetti, P. Khomyakov, G. Brocks, V. Karpan, J. van den Brink, P. Kelly, Phys. Rev. Lett. 101, 4 (2008). https://doi.org/10.1103/PhysRevLett.101.026803

    Article  CAS  Google Scholar 

  25. F. Xia, V. Perebeinos, Y. Lin, Y. Wu, P. Avouris, Nat. Nanotechnol. 6(3), 179 (2011). https://doi.org/10.1038/nnano.2011.6

    Article  Google Scholar 

  26. Y. Song, S.J. Kang, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 29, 011011 (2011). https://doi.org/10.1116/1.3520436

    Article  CAS  Google Scholar 

  27. S.C. Lim, J.H. Jang, D.J. Bae, G.H. Han, S. Lee, I.-S. Yeo, Y.H. Lee, Appl. Phys. Lett. 95, 264103 (2009). https://doi.org/10.1063/1.3255016

    Article  CAS  Google Scholar 

  28. A. Krittayavathananon, K. Ngamchuea, X. Li, C. Batchelor-McAuley, E. Kätelhön, K. Chaisiwamongkhol, M. Sawangphruk, R.G. Compton, J. Phys. Chem. Lett. 8, 3908 (2017). https://doi.org/10.1021/acs.jpclett.7b01771

    Article  CAS  Google Scholar 

  29. A.N. Andriotis, M. Menon, G.E. Froudakis, Appl. Phys. Lett. 76, 3890 (2000). https://doi.org/10.1063/1.126811

    Article  CAS  Google Scholar 

  30. F. Xia, V. Perebeinos, Y. Lin, Y. Wu, P. Avouris, Nat. Nanotechnol. 6, 179 (2011). https://doi.org/10.1038/nnano.2011.6

    Article  CAS  Google Scholar 

  31. T. Kanbara, T. Takenobu, T. Takahashi, Y. Iwasa, K. Tsukagoshi, Y. Aoyagi, H. Kataura, Appl. Phys. Lett. 88, 053118 (2006). https://doi.org/10.1063/1.2171481

    Article  CAS  Google Scholar 

  32. R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K. Chan, J. Tersoff, P. Avouris, Phys. Rev. Lett. 87, 17 (2001). https://doi.org/10.1103/PhysRevLett.87.256805

    Article  CAS  Google Scholar 

  33. R. Martel, H.P. Wong, K. Chan, P. Avouris, IEEE International Electron Devices Meeting (IEEE, Washington, DC, December 2–5, 2001), p. 159

    Google Scholar 

  34. W.-Q. Deng, Y. Matsuda, W.A. Goddard, J. Am. Chem. Soc. 129, 9834 (2007). https://doi.org/10.1021/ja061443r

    Article  CAS  Google Scholar 

  35. Y. Weizmann, J. Lim, D.M. Chenoweth, T.M. Swager, Nano Lett. 10, 2466 (2010). https://doi.org/10.1021/nl1008025

    Article  CAS  Google Scholar 

  36. J. Zhang, H. Zou, Q. Qing, Y. Yang, Q. Li, Z. Liu, X. Guo, Z. Du, J. Phys. Chem. B 107, 3712 (2003). https://doi.org/10.1021/jp027500u

    Article  CAS  Google Scholar 

  37. A.M. Da Silva, G.M. Junqueira, C.P. Anconi, H.F. Dos Santos, J. Phys. Chem. C 113, 10079 (2009). https://doi.org/10.1021/jp811012j

    Article  CAS  Google Scholar 

  38. J.M. Simmons, B.M. Nichols, S.E. Baker, M.S. Marcus, O.M. Castellini, C.-S. Lee, R.J. Hamers, M.A. Eriksson, J. Phys. Chem. B 110, 7113 (2006). https://doi.org/10.1021/jp0548422

    Article  CAS  Google Scholar 

  39. D. Carroll, P. Redlich, P. Ajayan, J. Charlier, X. Blase, A. De Vita, R. Car, Phys. Rev. Lett. 78, 2811 (1997). https://doi.org/10.1103/PhysRevLett.78.2811

    Article  CAS  Google Scholar 

  40. L. Vaisman, H.D. Wagner, G. Marom, Adv. Colloid Interface Sci. 128–130, 37 (2006). https://doi.org/10.1016/j.cis.2006.11.007

    Article  CAS  Google Scholar 

  41. V.C. Moore, M.S. Strano, E.H. Haroz, R.H. Hauge, R.E. Smalley, J. Schmidt, Y. Talmon, Nano Lett. 3, 1379 (2003). https://doi.org/10.1021/nl034524j

    Article  CAS  Google Scholar 

  42. I. Ojea-Jimenez, V. Puntes, J. Am. Chem. Soc. 131, 13320 (2009). https://doi.org/10.1021/ja902894s

    Article  CAS  Google Scholar 

  43. P. Kim, T.W. Odom, J.-L. Huang, C.M. Lieber, Phys. Rev. Lett. 82, 1225 (1999)

    Article  CAS  Google Scholar 

  44. L.C. Venema, J.W.G. Wildo, C. Dekker, Nature 584, 1996 (1998)

    Google Scholar 

  45. A. Teulle, M. Bosman, C. Girard, K.L. Gurunatha, M. Li, S. Mann, E. Dujardin, Nat. Mater. 14, 87 (2015). https://doi.org/10.1038/nmat4114

    Article  CAS  Google Scholar 

Download references

Funding

This work was partially supported by the University of Trieste, Italian Ministry of Education MIUR (Cofin Prot. Notes20085M27SS), and partially supported by the National Council of Science and Technology of Mexico, PhD fellowship (Del Rio, 211359).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AEDRC, MG. Data curation: AEDRC. LS, MQ, MG. Founding MP. Supervision MQ, MP., Writing, editing and reviewing all the authors.

Corresponding author

Correspondence to Antonio Esau Del Rio Castillo.

Ethics declarations

Conflic of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

43577_2022_308_MOESM1_ESM.pdf

All reagents and solvents were purchased from Sigma Aldrich and used without further purification. The experimental procedure can be found in the Electronic Supplementary Information (ESI). Supplementary file1 (PDF 611 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Rio Castillo, A.E., Laura Soriano, M., Grzelczak, M. et al. One-dimensional heterostructure: The selective decoration of single-walled carbon nanotube tips with metallic nanoparticles. MRS Bulletin 47, 675–679 (2022). https://doi.org/10.1557/s43577-022-00308-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-022-00308-3

Keywords

Navigation