Skip to main content
Log in

Effect of local twin Schmid factor on the tension twinning activities in a highly textured Mg–3Al–1Zn alloy under different strain paths

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We investigated the effect of the local twin Schmid factor (SF) on the tension twinning of individual grains in deformed textured Mg–3Al–1Zn samples under various strain paths. Statistical analyses on the electron backscatter diffraction results revealed tension twinning generally obeys the Schmid law for individual grains, regardless of whether the global stress state favors tension twinning or not. The strong dependence of tension twinning on the SF contrasts with the reported weak correlation of 〈c + a〉 dislocations and SF in the same material system. The different responses of 〈c + a〉 dislocations and tension twins to the local SF are discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. M.R. Barnett, Twinning and the ductility of magnesium alloys. Mater. Sci. Eng. A 464, 1–7 (2007). https://doi.org/10.1016/j.msea.2006.12.037

    Article  CAS  Google Scholar 

  2. H. El Kadiri, C.D. Barrett, J. Wang, C.N. Tomé, Why are twins profuse in magnesium? Acta Mater. 85, 354–361 (2015). https://doi.org/10.1016/j.actamat.2014.11.033

    Article  CAS  Google Scholar 

  3. K. Hazeli, J. Cuadra, P.A. Vanniamparambil, A. Kontsos, In situ identification of twin-related bands near yielding in a magnesium alloy. Scripta Mater. 68, 83–86 (2013). https://doi.org/10.1016/j.scriptamat.2012.09.009

    Article  CAS  Google Scholar 

  4. K.D. Molodov, T. Al-Samman, D.A. Molodov, S. Korte-Kerzel, On the twinning shear of twins in magnesium—experimental determination and formal description. Acta Mater. 134, 267–273 (2017). https://doi.org/10.1016/j.actamat.2017.05.041

    Article  CAS  Google Scholar 

  5. N. Dixit, K.Y. Xie, K.J. Hemker, K.T. Ramesh, Microstructural evolution of pure magnesium under high strain rate loading. Acta Mater. 87, 56–67 (2015). https://doi.org/10.1016/j.actamat.2014.12.030

    Article  CAS  Google Scholar 

  6. S.-G. Hong, S.H. Park, C.S. Lee, Role of 10–12 twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy. Acta Mater. 58, 5873–5885 (2010). https://doi.org/10.1016/j.actamat.2010.07.002

    Article  CAS  Google Scholar 

  7. A. Khosravani, D.T. Fullwood, B.L. Adams, T.M. Rampton, M.P. Miles, R.K. Mishra, Nucleation and propagation of twins in AZ31 magnesium alloy. Acta Mater. 100, 202–214 (2015). https://doi.org/10.1016/j.actamat.2015.08.024

    Article  CAS  Google Scholar 

  8. J. Jiang, A. Godfrey, W. Liu, Q. Liu, Microtexture evolution via deformation twinning and slip during compression of magnesium alloy AZ31. Mater. Sci. Eng. A 483–484, 576–579 (2008). https://doi.org/10.1016/j.msea.2006.07.175

    Article  CAS  Google Scholar 

  9. Y. Xin, M. Wang, Z. Zeng, M. Nie, Q. Liu, Strengthening and toughening of magnesium alloy by 10–12 extension twins. Scripta Mater. 66, 25–28 (2012). https://doi.org/10.1016/j.scriptamat.2011.09.033

    Article  CAS  Google Scholar 

  10. I.J. Beyerlein, L. Capolungo, P.E. Marshall, R.J. McCabe, C.N. Tomé, Statistical analyses of deformation twinning in magnesium. Philos. Mag. 90, 2161–2190 (2010). https://doi.org/10.1080/14786431003630835

    Article  CAS  Google Scholar 

  11. M.R. Barnett, A. Ghaderi, J. Quinta da Fonseca, J.D. Robson, Influence of orientation on twin nucleation and growth at low strains in a magnesium alloy. Acta Mater. 80, 380–391 (2014). https://doi.org/10.1016/j.actamat.2014.07.013

    Article  CAS  Google Scholar 

  12. M.R. Barnett, A rationale for the strong dependence of mechanical twinning on grain size. Scripta Mater. 59, 696–698 (2008). https://doi.org/10.1016/j.scriptamat.2008.05.027

    Article  CAS  Google Scholar 

  13. M. Arul Kumar, I.J. Beyerlein, R.J. McCabe, C.N. Tomé, Grain neighbour effects on twin transmission in hexagonal close-packed materials. Nat. Commun. 7, 13826 (2016). https://doi.org/10.1038/ncomms13826

    Article  CAS  Google Scholar 

  14. Y. Pei, A. Godfrey, J. Jiang, Y.B. Zhang, W. Liu, Q. Liu, Extension twin variant selection during uniaxial compression of a magnesium alloy. Mater. Sci. Eng. A 550, 138–145 (2012). https://doi.org/10.1016/j.msea.2012.04.046

    Article  CAS  Google Scholar 

  15. S. Godet, L. Jiang, A. Luo, J. Jonas, Use of Schmid factors to select extension twin variants in extruded magnesium alloy tubes. Scripta Mater. 55, 1055–1058 (2006). https://doi.org/10.1016/j.scriptamat.2006.07.059

    Article  CAS  Google Scholar 

  16. B. Lee, W. Chu, W. Li, Effects of Process Parameters on graphene growth via low-pressure chemical vapor deposition. J. Micro Nano-Manuf. 8, 031005 (2020). https://doi.org/10.1115/1.4048494

    Article  CAS  Google Scholar 

  17. K.Y. Xie, D. Zhao, B. Leu, X. Ma, Q. Jiao, J.A. El-Awady, T.P. Weihs, I.J. Beyerlein, M.A. Kumar, Understanding the interaction of extension twinning and basal-plate precipitates in Mg–9Al using precession electron diffraction. Materialia 15, 101044 (2021). https://doi.org/10.1016/j.mtla.2021.101044

    Article  CAS  Google Scholar 

  18. D. Zhao, X. Ma, A. Srivastava, G. Turner, I. Karaman, K.Y. Xie, Significant disparity of non-basal dislocation activities in hot-rolled highly-textured Mg and Mg–3Al–1Zn alloy under tension. Acta Mater. 207, 116691 (2021). https://doi.org/10.1016/j.actamat.2021.116691

    Article  CAS  Google Scholar 

  19. J. Čapek, K. Máthis, B. Clausen, M. Barnett, Dependence of twinned volume fraction on loading mode and Schmid factor in randomly textured magnesium. Acta Mater. 130, 319–328 (2017). https://doi.org/10.1016/j.actamat.2017.03.017

    Article  CAS  Google Scholar 

  20. D. Zhao, R. Shi, P. Evans, A.A. Luo, K.Y. Xie, On the exceptionally high ductility of Mg–2Zn–0.3Ca–0.2Ce–0.1Mn alloy. Mater. Sci. Eng. A 819, 141484 (2021)

    Article  CAS  Google Scholar 

  21. F. Bachmann, R. Hielscher, H. Schaeben, Texture analysis with MTEX—free and open source software toolbox. SSP 160, 63–68 (2010). https://doi.org/10.4028/www.scientific.net/SSP.160.63

    Article  CAS  Google Scholar 

  22. V. Herrera-Solaz, J. LLorca, E. Dogan, I. Karaman, J. Segurado, An inverse optimization strategy to determine single crystal mechanical behavior from polycrystal tests: application to AZ31 Mg alloy. Int. J. Plasticity 57, 1–15 (2014). https://doi.org/10.1016/j.ijplas.2014.02.001

    Article  CAS  Google Scholar 

  23. M.W. Vaughan, W. Nasim, E. Dogan, J.S. Herrington, G. Proust, A.A. Benzerga, I. Karaman, Interplay between the effects of deformation mechanisms and dynamic recrystallization on the failure of Mg–3Al–1Zn. Acta Mater. 168, 448–472 (2019). https://doi.org/10.1016/j.actamat.2019.02.010

    Article  CAS  Google Scholar 

  24. D. Zhao, X. Ma, S. Picak, I. Karaman, K. Xie, Activation and suppression of 〈c + a〉 dislocations in a textured Mg–3Al–1Zn alloy. Scripta Mater. 179, 49–54 (2020). https://doi.org/10.1016/j.scriptamat.2019.11.057

    Article  CAS  Google Scholar 

  25. X. Wang, P. Mao, Z. Liu, Z. Wang, F. Wang, L. Zhou, Z. Wei, Nucleation and growth analysis of 10 1 − 2 extension twins in AZ31 magnesium alloy during in-situ tension. J. Alloys Compd. 817, 152967 (2020). https://doi.org/10.1016/j.jallcom.2019.152967

    Article  CAS  Google Scholar 

  26. J.J. Jonas, S. Mu, T. Al-Samman, G. Gottstein, L. Jiang, Ė Martin, The role of strain accommodation during the variant selection of primary twins in magnesium. Acta Mater. 59, 2046–2056 (2011). https://doi.org/10.1016/j.actamat.2010.12.005

    Article  CAS  Google Scholar 

  27. K.Y. Xie, K. Hazeli, N. Dixit, L. Ma, K.T. Ramesh, K.J. Hemker, Twin boundary migration mechanisms in quasi-statically compressed and plate-impacted Mg single crystals. Sci. Adv. 7, eabg443 (2021). https://doi.org/10.1126/sciadv.abg3443

    Article  CAS  Google Scholar 

  28. J. Zhang, S.P. Joshi, Phenomenological crystal plasticity modeling and detailed micromechanical investigations of pure magnesium. J. Mech. Phys. Solids 60, 945–972 (2012). https://doi.org/10.1016/j.jmps.2012.01.005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the funding support from the National Science Foundation (NSF-DMR, Grant Number: 1709865, Program Manager: Gary Shiflet) for the financial support for this research. The authors would like to acknowledge the instrument and technical support from the Microscopy & Imaging Center and the Materials Characterization Facility at Texas A&M University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelvin Y. Xie.

Ethics declarations

Conflict of interest

The authors declared that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Dong, J. & Xie, K.Y. Effect of local twin Schmid factor on the tension twinning activities in a highly textured Mg–3Al–1Zn alloy under different strain paths. MRS Communications 12, 217–222 (2022). https://doi.org/10.1557/s43579-022-00165-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-022-00165-w

Keywords

Navigation