Skip to main content
Log in

Tandem hidden Markov models using deep belief networks for offline handwriting recognition

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Unconstrained offline handwriting recognition is a challenging task in the areas of document analysis and pattern recognition. In recent years, to sufficiently exploit the supervisory information hidden in document images, much effort has been made to integrate multi-layer perceptrons (MLPs) in either a hybrid or a tandem fashion into hidden Markov models (HMMs). However, due to the weak learnability of MLPs, the learnt features are not necessarily optimal for subsequent recognition tasks. In this paper, we propose a deep architecture-based tandem approach for unconstrained offline handwriting recognition. In the proposed model, deep belief networks are adopted to learn the compact representations of sequential data, while HMMs are applied for (sub-)word recognition. We evaluate the proposed model on two publicly available datasets, i.e., RIMES and IFN/ENIT, which are based on Latin and Arabic languages respectively, and one dataset collected by ourselves called Devanagari (an Indian script). Extensive experiments show the advantage of the proposed model, especially over the MLP-HMMs tandem approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Augustin, E., Carré, M., Grosicki, E., et al., 2006. RIMES evaluation campaign for handwritten mail processing. Proc. Int. Workshop on Frontiers in Handwriting Recognition, p.231–235.

    Google Scholar 

  • Baum, L.E., Petrie, T., Soules, G., et al., 1970. A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Statist., 41(1): 164–171.

    Article  MathSciNet  MATH  Google Scholar 

  • Bertolami, R., Bunke, H., 2008. Hidden Markov modelbased ensemble methods for offline handwritten text line recognition. Patt. Recog., 41(11): 3452–3460. http://dx.doi.org/10.1016/j.patcog.2008.04.003

    Article  MATH  Google Scholar 

  • Bianne-Bernard, A.L., Menasri, F., Mohamad, R.A.H., et al., 2011. Dynamic and contextual information in HMM modeling for handwritten word recognition. IEEE Trans. Patt. Anal. Mach. Intell., 33(10): 2066–2080. http://dx.doi.org/10.1109/TPAMI.2011.22

    Article  Google Scholar 

  • Bourlard, H.A., Morgan, N., 1994. Connectionist Speech Recognition: a Hybrid Approach. Springer US, USA.

    Book  Google Scholar 

  • Bunke, H., 2003. Recognition of cursive Roman handwriting: past, present and future. Proc. 7th Int. Conf. on Document Analysis and Recognition, p.448–459. http://dx.doi.org/10.1109/ICDAR.2003.1227707

    Google Scholar 

  • Dahl, G., Yu, D., Deng, L., et al., 2011. Large vocabulary continuous speech recognition with context-dependent DBN-HMMs. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.4688–4691.

    Google Scholar 

  • Deselaers, T., Hasan, S., Bender, O., et al., 2009. A deep learning approach to machine transliteration. Proc. 4th Workshop on Statistical Machine Translation, p.233–241.

    Google Scholar 

  • Dreuw, P., Heigold, G., Ney, H., 2009. Confidence-based discriminative training for model adaptation in offline Arabic handwriting recognition. Proc. 10th Int. Conf. on Document Analysis and Recognition, p.596–600. http://dx.doi.org/10.1109/ICDAR.2009.116

    Google Scholar 

  • Dreuw, P., Doetsch, P., Plahl, C., et al., 2011a. Hierarchical hybrid MLP/HMM or rather MLP features for a discriminatively trained Gaussian HMM: a comparison for offline handwriting recognition. Proc. 18th Int. Conf. on Image Processing, p.3541–3544. http://dx.doi.org/10.1109/ICIP.2011.6116480

    Google Scholar 

  • Dreuw, P., Heigold, G., Ney, H., 2011b. Confidence-and margin-based MMI/MPE discriminative training for offline handwriting recognition. Int. J. Doc. Anal. Recog., 14: 273–288. http://dx.doi.org/10.1007/s10032-011-0160-x

    Article  Google Scholar 

  • El-Yacoubi, A., Gilloux, M., Sabourin, R., et al., 1999. An HMM-based approach for off-line unconstrained handwritten word modeling and recognition. IEEE Trans. Patt. Anal. Mach. Intell., 21(8): 752–760. http://dx.doi.org/10.1109/34.784288

    Article  Google Scholar 

  • Espana-Boquera, S., Castro-Bleda, M.J., Gorbe-Moya, J., et al., 2011. Improving offline handwritten text recognition with hybrid HMM/ANN models. IEEE Trans. Patt. Anal. Mach. Intell., 33(4): 767–779. http://dx.doi.org/10.1109/TPAMI.2010.141

    Article  Google Scholar 

  • Fujisawa, H., 2008. Forty years of research in character and document recognition—an industrial perspective. Patt. Recog., 41: 2435–2446. http://dx.doi.org/10.1016/j.patcog.2008.03.015

    Article  Google Scholar 

  • Graves, A., Schmidhuber, J., 2008. Offline handwriting recognition with multidimensional recurrent neural networks. Proc. 21st Int. Conf. on Neural Information Processing Systems, p.545–552.

    Google Scholar 

  • Graves, A., Liwicki, M., Fernández, S., et al., 2009. A novel connectionist system for unconstrained handwriting recognition. IEEE Trans. Patt. Anal. Mach. Intell., 31(5): 855–868. http://dx.doi.org/10.1109/TPAMI.2008.137

    Article  Google Scholar 

  • Grosicki, E., El Abed, H., 2009. ICDAR 2009 handwriting recognition competition. Proc. 10th Int. Conf. on Document Analysis and Recognition, p.1398–1402. http://dx.doi.org/10.1109/ICDAR.2009.184

    Google Scholar 

  • Haykin, S., 1998. Neural Networks: a Comprehensive Foundation. Prentice Hall, USA.

    MATH  Google Scholar 

  • Hermansky, H., Ellis, D.P.W., Sharma, S., 2000. Tandem connectionist feature extraction for conventional HMM systems. Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, p.1–4. http://dx.doi.org/10.1109/ICASSP.2000.862024

    Google Scholar 

  • Hinton, G.E., 2002. Training products of experts by minimizing contrastive divergence. Neur. Comput., 14(8): 1771–1800. http://dx.doi.org/10.1162/089976602760128018

    Article  MATH  Google Scholar 

  • Hinton, G.E., Osindero, S., Teh, Y.W., 2006. A fast learning algorithm for deep belief nets. Neur. Comput., 18(7): 1527–1554. http://dx.doi.org/10.1162/neco.2006.18.7.1527

    Article  MathSciNet  MATH  Google Scholar 

  • Kessentini, Y., Paquet, T., Benhamadou, A., 2008. A multistream HMM-based approach for off-line multi-script handwritten word recognition. Proc. Int. Conf. on Frontiers in Handwriting Recognition, p.1–6.

    Google Scholar 

  • Kittler, J., Young, P.C., 1973. A new approach to feature selection based on the Karhunen-Loeve expansion. Patt. Recog., 5(4): 335–352. http://dx.doi.org/10.1016/0031-3203(73)90025-3

    Article  MathSciNet  Google Scholar 

  • Kozielski, M., Doetsch, P., Ney, H., 2013. Improvements in RWTH’s system for off-line handwriting recognition. Proc. 12th Int. Conf. on Document Analysis and Recognition, p.935–939. http://dx.doi.org/10.1109/ICDAR.2013.190

    Google Scholar 

  • Margner, V., El Abed, H., 2010. ICFHR 2010—Arabic handwriting recognition competition. Proc. Int. Conf. on Frontiers in Handwriting Recognition, p.709–714. http://dx.doi.org/10.1109/ICFHR.2010.115

    Google Scholar 

  • Marinai, S., Gori, M., Soda, G., 2005. Artificial neural networks for document analysis and recognition. IEEE Trans. Patt. Anal. Mach. Intell., 27(1): 23–35. http://dx.doi.org/10.1109/TPAMI.2005.4

    Article  Google Scholar 

  • Marti, U.V., Bunke, H., 2001. Using a statistical language model to improve the performance of an HMM-based cursive handwriting recognition system. Int. J. Patt. Recog. Artif. Intell., 15(1): 65–90. http://dx.doi.org/10.1142/S0218001401000848

    Article  Google Scholar 

  • Mohamad, R.A.H., Likforman-Sulem, L., Mokbel, C., 2009. Combining slanted-frame classifiers for improved HMMbased Arabic handwriting recognition. IEEE Trans. Patt. Anal. Mach. Intell., 31(7): 1165–1177. http://dx.doi.org/10.1109/TPAMI.2008.136

    Article  Google Scholar 

  • Mohamed, A.R., Dahl, G., Hinton, G., 2009. Deep belief networks for phone recognition. Proc. NIPS Workshop on Deep Learning for Speech Recognition and Related Applications, p.1–9.

    Google Scholar 

  • Mohamed, A.R., Dahl, G., Hinton, G., 2012. Acoustic modeling using deep belief networks. IEEE Trans. Audio Speech Lang. Process., 20(1): 14–22. http://dx.doi.org/10.1109/TASL.2011.2109382

    Article  Google Scholar 

  • Otsu, N., 1979. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern., 9(1): 62–66. http://dx.doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  • Pal, U., Chaudhuri, B.B., 2004. Indian script character recognition: a survey. Patt. Recog., 37(9): 1887–1899. http://dx.doi.org/10.1016/j.patcog.2004.02.003

    Article  Google Scholar 

  • Rabiner, L.R., 1989. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE, 77(2): 257–286. http://dx.doi.org/10.1109/5.18626

    Article  Google Scholar 

  • Renals, S., Morgan, N., Bourlard, H., et al., 1994. Connectionist probability estimators in HMM speech recognition. IEEE Trans. Speech Audio Process., 2(1): 161–174. http://dx.doi.org/10.1109/89.260359

    Article  Google Scholar 

  • Rodríguez, J.A., Perronnin, F., 2008. Local gradient histogram features for word spotting in unconstrained handwritten documents. Proc. Int. Conf. on Frontiers in Handwriting Recognition, p.7–12.

    Google Scholar 

  • Schenk, J., Rigoll, G., 2006. Novel hybrid NN/HMM modelling techniques for on-line handwriting recognition. Proc. 10th Int. Workshop on Frontiers in Handwriting Recognition, p.1–5.

    Google Scholar 

  • Senior, A., Robinson, A.J., 1998. An off-line cursive handwriting recognition system. IEEE Trans. Patt. Anal. Mach. Intell., 20(3): 309–321. http://dx.doi.org/10.1109/34.667887

    Article  Google Scholar 

  • Senior, A., Heigold, G., Bacchiani, M., et al., 2014. GMMfree DNN training. Proc. Int. Conf. on Acoustics, Speech, and Signal Processing, p.1–5.

    Google Scholar 

  • Sharma, S., Ellis, D., Kajarekar, S., et al., 2000. Feature extraction using non-linear transformation for robust speech recognition on the Aurora database. Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, p.1117–1120. http://dx.doi.org/10.1109/ICASSP.2000.859160

    Google Scholar 

  • Shaw, B., Bhattacharya, U., Parui, S.K., 2014. Combination of features for efficient recognition of offline handwritten Devanagari words. Proc. 14th Int. Conf. on Frontiers in Handwriting Recognition, p.240–245. http://dx.doi.org/10.1109/ICFHR.2014.48

    Google Scholar 

  • Thomas, S., Chatelain, C., Heutte, L., et al., 2015. A deep HMM model for multiple keywords spotting in handwritten documents. Patt. Anal. Appl., 18(4): 1003–1015. http://dx.doi.org/10.1007/s10044-014-0433-3

    Article  MathSciNet  Google Scholar 

  • Vinciarelli, A., 2002. A survey on off-line cursive word recognition. Patt. Recog., 35(7): 1433–1446. http://dx.doi.org/10.1016/S0031-3203(01)00129-7

    Article  MATH  Google Scholar 

  • Vinciarelli, A., Bengio, S., Bunke, H., 2004. Offline recognition of unconstrained handwritten texts using HMMs and statistical language models. IEEE Trans. Patt. Anal. Mach. Intell., 26(6): 709–720. http://dx.doi.org/10.1109/TPAMI.2004.14

    Article  Google Scholar 

  • Young, S., Evermann, G., Gales, M.J.F., 2006. The HTK Book (Version 3.4). Engineering Department, Cambridge University, UK.

    Google Scholar 

  • Zimmermann, M., Chappelier, J.C., Bunke, H., 2006. Offline grammar-based recognition of handwritten sentences. IEEE Trans. Patt. Anal. Mach. Intell., 28(5): 818–821. http://dx.doi.org/10.1109/TPAMI.2006.103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Pratim Roy.

Additional information

Project supported by the National Natural Science Foundation of China (No. 61403353)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, P.P., Zhong, G. & Cheriet, M. Tandem hidden Markov models using deep belief networks for offline handwriting recognition. Frontiers Inf Technol Electronic Eng 18, 978–988 (2017). https://doi.org/10.1631/FITEE.1600996

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1600996

Key words

CLC number

Navigation