Skip to main content
Log in

Characteristics of orifices for modeling nonlinear power take-off in wave-flume tests of oscillating water column devices

振荡水柱装置波浪水槽试验中用于模拟非线性能量俘获系统的孔口特性

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Oscillating water column (OWC) devices for wave power extraction are appealing, but are still in need of research. In this study, a series of wave-flume experiments was conducted to examine the hydrodynamic performance of a rectangular OWC device fixed in regular waves. Two types of orifices, slot orifices and circular orifices, were used to simulate the nonlinear power take-off (PTO) mechanism, and the effects of orifice geometry were examined. A two-point measurement method was proposed to reconstruct the instantaneous spatial profile of the water surface inside the OWC chamber for reducing bias in the measured wave power extraction efficiency. The flow characteristics of PTO were described by a quadratic loss coefficient, and our experimental results showed that the quadratic loss coefficient of the slot orifices varied with wave period and slot geometry. Empirical formulas were proposed for the quadratic loss coefficients of the two types of orifices. The ability to determine the quadratic loss coefficient of an orifice will allow us to design orifices for small-scale tests and calculate the power extraction using only pressure measurement. Our results also suggested that the pressure coefficient should be more reliable than the amplification coefficient as an indicator of the power extraction performance of an OWC device.

中文概要

目 的

在振荡水柱装置研究中, 通常通过不同的孔口几何特征来改变能量俘获系统的特性, 但其具体流 动特性却鲜有报道。本文探讨孔口几何特征(形 状、尺寸和开孔率等)对流动特性的影响机制, 理解影响能量俘获系统特性的关键因素, 研究其 对振荡水柱装置水动力特性和波能提取的影响 规律, 并评估波能提取性能指标的有效性。

创新点

1. 提出了两点测量法来重构振荡水柱腔室内液 面; 2.建立了孔口流动特性与孔口几何特征的关 系式; 3. 提出了仅测量腔室内气压即可获得波能 提取功率的方法; 4. 该方法可扩展至非二维矩形 腔室及斜向波。

方 法

1. 采用不同尺寸狭缝孔和圆形孔来模拟非线性能 量俘获系统; 2. 通过一系列波浪水槽试验, 对振 荡水柱装置的水动力特性及波能的提取展开研 究; 3. 采用二次损耗系数和收缩系数来描述孔口 往复流动特性, 并构建其与孔口几何特征的关 系; 4. 通过两点测量法获取振荡水柱腔室内的准 确信息; 5. 评估压力波动系数和液面放大系数作 为振荡水柱装置波能提取性能指标的有效性。

结 论

1. 两点测量法能够重建二维矩形振荡水柱腔室内 液面的瞬时空间分布, 消除了单点法的测量偏 差; 2. 孔口相对厚度及振荡气流对可被视为薄壁 的圆形孔的影响可以忽略不计, 但对不能视为薄 壁的狭缝孔的影响显著; 3. 本文提出的二次损耗 系数经验公式可用于(1)通过孔口几何尺寸设 计其流动特性和(2)通过仅测量腔室内气压来 计算波能提取功率; 4. 用作振荡水柱装置的波能 提取性能指标时, 压力波动系数比液面放大系数 更为可靠。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Dai, H.L., Abdelkefi, A., Javed, U., et al., 2015. Modeling and performance of electromagnetic energy harvesting from galloping oscillations. Smart Materials and Structures, 24(4): 045012. http://dx.doi.org/10.1088/0964-1726/24/4/045012

    Article  Google Scholar 

  • Delauré, Y.M.C., Lewis, A., 2003. 3D hydrodynamic modelling of fixed oscillating water column wave power plant by a boundary element methods. Ocean Engineering, 30(3): 309–330. http://dx.doi.org/10.1016/S0029-8018(02)00032-X

    Article  Google Scholar 

  • Dizadji, N., Sajadian, S.E., 2011. Modeling and optimization of the chamber of OWC system. Energy, 36(5): 2360–2366. http://dx.doi.org/10.1016/j.energy.2011.01.010

    Article  Google Scholar 

  • Elhanafi, A., Fleming, A., Macfarlane, G., et al., 2016. Numerical energy balance analysis for an onshore oscillating water column–wave energy converter. Energy, 116: 539–557. http://dx.doi.org/10.1016/j.energy.2016.09.118

    Article  Google Scholar 

  • Elhanafi, A., Macfarlane, G., Fleming, A., et al., 2017a. Scaling and air compressibility effects on a threedimensional offshore stationary OWC wave energy converter. Applied Energy, 189: 1–20. http://dx.doi.org/10.1016/j.apenergy.2016.11.095

    Article  Google Scholar 

  • Elhanafi, A., Fleming, A., Macfarlane, G., et al., 2017b. Underwater geometrical impact on the hydrodynamic performance of an offshore oscillating water column–wave energy converter. Renewable Energy, 105: 209–231. http://dx.doi.org/10.1016/j.renene.2016.12.039

    Article  Google Scholar 

  • Esteban, M., Leary, D., 2012. Current developments and future prospects of offshore wind and ocean energy. Applied Energy, 90(1): 128–136. http://dx.doi.org/10.1016/j.apenergy.2011.06.011

    Article  Google Scholar 

  • Evans, D.V., 1982. Wave-power absorption by systems of oscillating surface pressure distribution. Journal of Fluid Mechanics, 114: 481–499. http://dx.doi.org/10.1017/S0022112082000263

    Article  MathSciNet  MATH  Google Scholar 

  • Evans, D.V., Porter, R., 1995. Hydrodynamic characteristics of an oscillating water column device. Applied Ocean Research, 17(3): 155–164. http://dx.doi.org/10.1016/0141-1187(95)00008-9

    Article  Google Scholar 

  • Fadaeenejad, M., Shamsipour, R., Rokni, S.D., et al., 2014. New approaches in harnessing wave energy: with special attention to small islands. Renewable and Sustainable Energy Reviews, 29: 345–354. http://dx.doi.org/10.1016/j.rser.2013.08.077

    Article  Google Scholar 

  • Falcão, A.F.O., 2010. Wave energy utilization: a review of the technologies. Renewable and Sustainable Energy Reviews, 14(3): 899–918. http://dx.doi.org/10.1016/j.rser.2009.11.003

    Article  Google Scholar 

  • Falcão, A.F.O., Henriques, J.C.C., 2014. Model-prototype similarity of oscillating-water-column wave energy converters. International Journal of Marine Energy, 6: 18–34. http://dx.doi.org/10.1016/j.ijome.2014.05.002

    Article  Google Scholar 

  • Finnemore, E.J., Franzini, J.B., 2002. Fluid Mechanics with Engineering Applications. McGraw-Hill, Boston, USA.

    Google Scholar 

  • Fossa, M., Guglielmini, G., 2002. Pressure drop and void fraction profiles during horizontal flow through thin and thick orifices. Experimental Thermal and Fluid Science, 26(5): 513–523. http://dx.doi.org/10.1016/S0894-1777(02)00156-5

    Article  Google Scholar 

  • Goda, Y., Suzuki, Y., 1976. Estimation of incident and reflected waves in random wave experiments. Proceedings of the 15th International Conference on Coastal Engineering, p.828–845. http://dx.doi.org/10.1061/9780872620834.048

    Google Scholar 

  • Gouaud, F., Rey, V., Piazzola, J., et al., 2010. Experimental study of the hydrodynamic performance of an onshore wave power device in the presence of an underwater mound. Coastal Engineering, 57(11–12): 996–1005. http://dx.doi.org/10.1016/j.coastaleng.2010.06.003

    Article  Google Scholar 

  • He, F., Huang, Z., 2014. Hydrodynamic performance of pile-supported OWC-type structures as breakwaters: an experimental study. Ocean Engineering, 88: 618–626. http://dx.doi.org/10.1016/j.oceaneng.2014.04.023

    Article  Google Scholar 

  • He, F., Huang, Z., 2016. Using an oscillating water column structure to reduce wave reflection from a vertical wall. Journal of Waterway, Port, Coastal, and Ocean Engineering, 142(2): 04015021. http://dx.doi.org/10.1061/(asce)ww.1943-5460.0000320

    Article  Google Scholar 

  • He, F., Huang, Z., Law, A.W.K., 2012. Hydrodynamic performance of a rectangular floating breakwater with and without pneumatic chambers: an experimental study. Ocean Engineering, 51: 16–27. http://dx.doi.org/10.1016/j.oceaneng.2012.05.008

    Article  Google Scholar 

  • He, F., Huang, Z., Law, A.W.K., 2013. An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction. Applied Energy, 106: 222–231. http://dx.doi.org/10.1016/j.apenergy.2013.01.013

    Article  Google Scholar 

  • He, F., Li, M., Huang, Z., 2016. An experimental study of pile-supported OWC-type breakwaters: energy extraction and vortex-induced energy loss. Energies, 9(7): 540. http://dx.doi.org/10.3390/en9070540

    Article  Google Scholar 

  • Heath, T.V., 2012. A review of oscillating water columns. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1959): 235–245. http://dx.doi.org/10.1098/rsta.2011.0164

    Article  Google Scholar 

  • Huang, Z., 2007. Wave interaction with one or two rows of closely spaced rectangular cylinders. Ocean Engineering, 34(11–12): 1584–1591. http://dx.doi.org/10.1016/j.oceaneng.2006.11.002

    Article  Google Scholar 

  • Huang, Z., Li, Y., Liu, Y., 2011. Hydraulic performance and wave loadings of perforated/slotted coastal structures: a review. Ocean Engineering, 38(10): 1031–1053. http://dx.doi.org/10.1016/j.oceaneng.2011.03.002

    Article  Google Scholar 

  • Iglesias, G., Carballo, R., 2009. Wave energy potential along the Death Coast (Spain). Energy, 34(11): 1963–1975. http://dx.doi.org/10.1016/j.energy.2009.08.004

    Article  Google Scholar 

  • Iturrioz, A., Guanche, R., Armesto, J.A., et al., 2014. Timedomain modeling of a fixed detached oscillating water column towards a floating multi-chamber device. Ocean Engineering, 76: 65–74. http://dx.doi.org/10.1016/j.oceaneng.2013.11.023

    Article  Google Scholar 

  • Kuo, Y.S., Lin, C.S., Chung, C.Y., et al., 2015. Wave loading distribution of oscillating water column caisson breakwaters under non-breaking wave forces. Journal of Marine Science and Technology, 23(1): 78–87. http://dx.doi.org/10.6119/JMST-014-0114-1

    Google Scholar 

  • Kuo, Y.S., Chung, C.Y., Hsiao, S.C., et al., 2017. Hydrodynamic characteristics of oscillating water column caisson breakwaters. Renewable Energy, 103: 439–447. http://dx.doi.org/10.1016/j.renene.2016.11.028

    Article  Google Scholar 

  • López, I., Pereiras, B., Castro, F., et al., 2014. Optimisation of turbine-induced damping for an OWC wave energy converter using a RANS-VOF numerical model. Applied Energy, 127: 105–114. http://dx.doi.org/10.1016/j.apenergy.2014.04.020

    Article  Google Scholar 

  • Mei, C.C., Liu, P.L., Ippen, A.T., 1974. Quadratic loss and scattering of long waves. Journal of the Waterways, Harbors and Coastal Engineering Division, 100(3): 217–239.

    Google Scholar 

  • Mei, C.C., Stiassnie, M., Yue, D.K.P., 2005. Theory and Applications of Ocean Surface Waves. World Scientific, Singapore.

    MATH  Google Scholar 

  • Morris-Thomas, M.T., Irvin, R.J., Thiagarajan, K.P., 2007. An investigation into the hydrodynamic efficiency of an oscillating water column. Journal of Offshore Mechanics and Arctic Engineering, 129(4): 273–278. http://dx.doi.org/10.1115/1.2426992

    Article  Google Scholar 

  • Ning, D.Z., Shi, J., Zou, Q.P., et al., 2015. Investigation of hydrodynamic performance of an OWC (oscillating water column) wave energy device using a fully nonlinear HOBEM (higher-order boundary element method). Energy, 83: 177–188. http://dx.doi.org/10.1016/j.energy.2015.02.012

    Article  Google Scholar 

  • Ning, D.Z., Zhao, X.L., Göteman, M., et al., 2016a. Hydrodynamic performance of a pile-restrained WEC-type floating breakwater: an experimental study. Renewable Energy, 95: 531–541. http://dx.doi.org/10.1016/j.renene.2016.04.057

    Article  Google Scholar 

  • Ning, D.Z., Wang, R.Q., Gou, Y., et al., 2016b. Numerical and experimental investigation of wave dynamics on a landfixed OWC device. Energy, 115: 326–337. http://dx.doi.org/10.1016/j.energy.2016.09.001

    Article  Google Scholar 

  • Rostami, A.B., Armandei, M., 2017. Renewable energy harvesting by vortex-induced motions: review and benchmarking of technologies. Renewable and Sustainable Energy Reviews, 70: 193–214. http://dx.doi.org/10.1016/j.rser.2016.11.202

    Article  Google Scholar 

  • Sarmento, A.J.N.A., 1992. Wave flume experiments on two-dimensional oscillating water column wave energy devices. Experiments in Fluids, 12(4): 286–292. http://dx.doi.org/10.1007/BF00187307

    Google Scholar 

  • Sarmento, A.J.N.A., Falcão, A.F.O., 1985. Wave generation by an oscillating surface-pressure and its application in wave-energy extraction. Journal of Fluid Mechanics, 150: 467–485. http://dx.doi.org/10.1017/S0022112085000234

    Article  MATH  Google Scholar 

  • Sheng, W., Alcorn, R., Lewis, T., 2014. Physical modelling of wave energy converters. Ocean Engineering, 84: 29–36. http://dx.doi.org/10.1016/j.oceaneng.2014.03.019

    Article  Google Scholar 

  • Stopa, J.E., Cheung, K.F., Chen, Y.L., 2011. Assessment of wave energy resources in Hawaii. Renewable Energy, 36(2): 554–567. http://dx.doi.org/10.1016/j.renene.2010.07.014

    Article  Google Scholar 

  • Thiruvenkatasamy, K., Neelamani, S., 1997. On the efficiency of wave energy caissons in array. Applied Ocean Research, 19(1): 61–72. http://dx.doi.org/10.1016/S0141-1187(97)00008-4

    Article  Google Scholar 

  • Tseng, R.S., Wu, R.H., Huang, C.C., 2000. Model study of a shoreline wave-power system. Ocean Engineering, 27(8): 801–821. http://dx.doi.org/10.1016/S0029-8018(99)00028-1

    Article  Google Scholar 

  • Veigas, M., Iglesias, G., 2014. Potentials of a hybrid offshore farm for the island of Fuerteventura. Energy Conversion and Management, 86: 300–308. http://dx.doi.org/10.1016/j.enconman.2014.05.032

    Article  Google Scholar 

  • Vijayakrishna Rapaka, E., Natarajan, R., Neelamani, S., 2004. Experimental investigation on the dynamic response of a moored wave energy device under regular sea waves. Ocean Engineering, 31(5–6): 725–743. http://dx.doi.org/10.1016/j.oceaneng.2003.09.001

    Article  Google Scholar 

  • Wang, D.J., Katory, M., Li, Y.S., 2002. Analytical and experimental investigation on the hydrodynamic performance of onshore wave-power devices. Ocean Engineering, 29(8): 871–885. http://dx.doi.org/10.1016/S0029-8018(01)00058-0

    Article  Google Scholar 

  • Zhang, D., Li, W., Lin, Y., et al., 2012a. An overview of hydraulic systems in wave energy application in China. Renewable and Sustainable Energy Reviews, 16(7): 4522–4526. http://dx.doi.org/10.1016/j.rser.2012.04.005

    Article  Google Scholar 

  • Zhang, Y., Zou, Q.P., Greaves, D., 2012b. Air–water two-phase flow modelling of hydrodynamic performance of an oscillating water column device. Renewable Energy, 41: 159–170. http://dx.doi.org/10.1016/j.renene.2011.10.011

    Article  Google Scholar 

  • Zheng, S.M., Zhang, Y.H., Zhang, Y.L., et al., 2015. Numerical study on the dynamics of a two-raft wave energy conversion device. Journal of Fluids and Structures, 58: 271–290. http://dx.doi.org/10.1016/j.jfluidstructs.2015.07.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhua Huang.

Additional information

Project supported by the National Natural Science Foundation of China (No. 51609211), the Open Foundation of State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, China (No. LP1606), the Fundamental Research Funds for the Central Universities of China (No. 2016QNA4034), the Open Foundation of Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, China (No. 2016SS03), the AcRF Tier 2, Ministry of Education of Singapore (No. ARC7/09MOE2008-T2-070), and a Startup Grant from the University of Hawaii at Manoa, USA

ORCID: Fang HE, http://orcid.org/0000-0002-5559-6230; Zhenhua HUANG, http://orcid.org/0000-0001-6665-7230

Dr. Zhenhua HUANG obtained both his BEng and MEng in Fluid Mechanics from Tsinghua University, China. He obtained his PhD in Environmental Fluid Mechanics from the Massachusetts Institute of Technology, USA. Prior to joining the University of Hawaii at Manoa, USA in 2014, he was a faculty member first at the Hong Kong University of Science and Technology, China (2004-2006) and then at Nanyang Technological University, Singapore (2007-2013). He was a Principal Investigator of the Earth Observatory of Singapore, where he led a research group working on tsunami hydrodynamics from 2009 to 2014. He has been a member of the International Steering Committee for Asian and Pacific Coasts (APAC) since 2007. Dr. HUANG’s research interests lie in the broad field of hydrodynamics and its applications in coastal and ocean engineering. His recent research activities include hydrodynamics of marine structures, wave-energy conversion, coastal sediment transport, coral reef hydrodynamics, and tsunami hydrodynamics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, F., Huang, Z. Characteristics of orifices for modeling nonlinear power take-off in wave-flume tests of oscillating water column devices. J. Zhejiang Univ. Sci. A 18, 329–345 (2017). https://doi.org/10.1631/jzus.A1600769

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1600769

Keywords

关键词

CLC number

Navigation