Skip to main content

Advertisement

Log in

Litter accumulation promotes dominance of invasive species of cattails (Typha spp.) in Lake Ontario wetlands

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Wetlands of the Great Lakes region are increasingly dominated by invasive cattails (Typha angustifolia andTypha Xglauca) which form dense stands of live and dead biomass that may reduce plant diversity. We hypothesized that differences in plant litter accumulation explain cattail dominance under certain hydrologic regimes related to wetland hydrogeologic setting. We investigated cattail abundance, litter accumulation, and species density in three bayside wetlands hydrologically connected and three protected wetlands hydrologically isolated from Lake Ontario. Mean litter biomass was higher in bayside wetlands (1.7–2.6 vs. 0.4–1.2 kg/m2) and negatively related to species density (p = 0.004) in both settings. A litter addition experiment demonstrated that fallen litter negatively influenced seedling survival (p = 0.061) and species density (p = 0.024). Decomposition rates accounted only partially for higher overall litter accumulation in bayside wetlands. Growing season water levels in bayside wetlands tracked Lake Ontario levels and showed less variation than protected wetlands. More stable water levels and higher density of standing dead stems in bayside wetlands may limit litter fragmentation, resulting in greater litter accumulation. Thus, anthropogenic and natural factors affecting cattail litter production, fragmentation, and decomposition could influence species diversity in coastal wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Anderson, J. T. and L. M. Smith. 2002. The effect of flooding regimes on decomposition ofPolygonum pensylvanicum in playa wetlands (Southern Great Plains, USA). Aquatic Botany 74: 97–108.

    Article  Google Scholar 

  • Bailey, K. M. and B. L. Bedford. 2003. Transient geomorphic control of water table and hydraulic head reversals in a coastal freshwater peatland. Wetlands 23: 969–78.

    Article  Google Scholar 

  • Barlöcher, F. and N. R. Biddiscombe. 1996. Geratology and decomposition ofTypha latifolia andLythrum salicaria in a freshwater marsh. Archiv für Hydrobiologie 136: 309–25.

    Google Scholar 

  • Battle, J. M. and S. W. Golladay. 2001. Hydroperiod influence on breakdown of leaf litter in cypress-gum wetlands. American Midland Naturalist 146: 128–45.

    Article  Google Scholar 

  • Bedford, B. L. 1996. The need to define hydrologic equivalence at the landscape scale for freshwater wetland mitigation. Ecological Applications 6: 57–68.

    Article  Google Scholar 

  • Bedford, B. L., M. R. Walbridge, and A. Aldous. 1999. Patterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology 80: 2151–69.

    Google Scholar 

  • Berendse, F. 1999. Implications of increased litter production for plant biodiversity. Trends in Ecology & Evolution 14: 4–5.

    Article  Google Scholar 

  • Berendse, F., M. Schmitz, and W. Devisser. 1994. Experimental manipulation of succession in heathland ecosystems. Oecologia 100: 38–44.

    Article  Google Scholar 

  • Boers, A. M. and J. B. Zedler. 2008. Stabilized water levels andTypha invasiveness. Wetlands 28: 676–685.

    Article  Google Scholar 

  • Bouchard, V. 2007. Export of organic matter from a coastal freshwater wetland to Lake Erie: an extension of the outwelling hypothesis. Aquatic Ecology 41: 1–7.

    Article  CAS  Google Scholar 

  • Brazner, J. C., N. P. Danz, A. S. Trebitz, G. J. Niemi, R. R. Regal, T. Hollenhorst, G. E. Host, E. D. Reavie, T. N. Brown, J. M. Hanowski, C. A. Johnston, L. B. Johnson, R. W. Howe, and J. J. H. Ciborowski. 2007. Responsiveness of Great Lakes wetland indicators to human disturbances at multiple spatial scales: a multi-assemblage assessment. Journal of Great Lakes Research 33 (Special Issue 3): 42–66.

    Article  Google Scholar 

  • Brinson, M. M., A. E. Lugo, and S. Brown. 1981. Primary productivity, decomposition and consumer activity in freshwater wetlands. Annual Review of Ecology and Systematics 12: 123–61.

    Article  Google Scholar 

  • Davis, C. B. and A. G. van der Valk. 1978. Litter decomposition in prairie glacial marshes. p. 99–113.In R. E. Good, D. F. Whigham, and R. L. Simpson (eds.) Freshwater Wetlands. Academic Press Inc., New York, NY, USA.

    Google Scholar 

  • Dezozaya, I. Y. B. and J. J. Neiff. 1991. Decomposition and colonization by invertebrates ofTypha latifolia L. litter in Chaco cattail swamp (Argentina). Aquatic Botany 40: 185–93.

    Article  Google Scholar 

  • Facelli, J. M. 1994. Multiple indirect effects of plant litter affect the establishment of woody seedlings in old fields. Ecology 75: 1727–35.

    Article  Google Scholar 

  • Facelli, J. M. and S. T. A. Pickett. 1991. Plant litter — light interception and effects on an old-field plant community. Ecology 72: 1024–31.

    Article  Google Scholar 

  • Farrer, E. C. and D. E. Goldberg. 2009. Litter drives ecosystem and plant community changes in cattail invasion. Ecological Applications 19: 398–412.

    Article  PubMed  Google Scholar 

  • Foster, B. L., T. L. Dickson, C. A. Murphy, I. S. Karel, and V. H. Smith. 2004. Propagule pools mediate community assembly and diversity-ecosystem regulation along a grassland productivity gradient. Journal of Ecology 92: 435–49.

    Article  Google Scholar 

  • Foster, B. L. and K. L. Gross. 1997. Partitioning the effects of plant biomass and litter onAndropogon gerardi in old-field vegetation. Ecology 78: 2091–2104.

    Google Scholar 

  • Foster, B. L. and K. L. Gross. 1998. Species richness in a successional grassland: effects of nitrogen enrichment and plant litter. Ecology 79: 2593–2602.

    Article  Google Scholar 

  • Frieswyk, C. B. and J. B. Zedler. 2006. Do seed banks confer resilience to coastal wetlands invaded byTypha Xglauca? Canadian Journal of Botany 84: 1882–93.

    Article  Google Scholar 

  • Frieswyk, C. B. and J. B. Zedler. 2007. Vegetation change in Great Lakes coastal wetlands: deviation from the historical cycle. Journal of Great Lakes Research 33: 366–80.

    Article  Google Scholar 

  • Grace, J. B. 1993. The adaptive significance of clonal reproduction in angiosperms — an aquatic perspective. Aquatic Botany 44: 159–80.

    Article  Google Scholar 

  • Hill, N. M., P. A. Keddy, and I. C. Wisheu. 1998. A hydrological model for predicting the effects of dams on the shoreline vegetation of lakes and reservoirs. Environmental Management 22: 723–36.

    Article  PubMed  Google Scholar 

  • Hollenhorst, T. P., T. N. Brown, L. B. Johnson, J. J. H. Ciborowski, and G. E. Host. 2007. Methods for generating multi-scale watershed delineations for indicator development in Great Lakes coastal ecosystems. Journal of Great Lakes Research 33: 13–26.

    Article  CAS  Google Scholar 

  • International Joint Commission. 2004. Lake Ontario St. Lawrence river regulation brochure. International St. Lawrence River Board of Control. http://www.islrbc.org/new-Version/ brochure.html.

  • Johnson, S. and E. Rejmankova. 2005. Impacts of land use on nutrient distribution and vegetation composition of freshwater wetlands in northern Belize. Wetlands 25: 89–100.

    Article  Google Scholar 

  • Johnston, C. A., B. L. Bedford, M. Bourdaghs, T. Brown, C. B. Frieswyk, M. Tulbure, L. Vaccaro, and J. B. Zedler. 2007. Plant species indicators of environmental condition in Great Lakes coastal marshes. Journal of Great Lakes Research 33 (Special Issue 3): 106–24.

    Article  CAS  Google Scholar 

  • Johnston, C. A., T. Brown, T. Hollenhorst, P. Wolter, N. Danz, and G. Niemi. 2009. GIS in support of ecological indicator development. p. 1095–1113.In Manual of Geographic Information Systems. American Society for Photogrammetry and Remote Sensing, Bethesda, MD, USA.

    Google Scholar 

  • Jordan, T. E., D. F. Whigham, and D. L. Correll. 1990. Effects of nutrient and litter manipulations on the narrow-leaved cattail,Typha angustifolia L. Aquatic Botany 36: 179–91.

    Article  Google Scholar 

  • Keddy, P. A. and A. A. Reznicek. 1986. Great-Lakes vegetation dynamics — the role of fluctuating water levels and buried seeds. Journal of Great Lakes Research 12: 25–36.

    Google Scholar 

  • King, R. S., C. J. Richardson, D. L. Urban, and E. A. Romanowicz. 2004. Spatial dependency of vegetation-environment linkages in an anthropogenically influenced wetland ecosystem. Ecosystems 7: 75–97.

    Article  CAS  Google Scholar 

  • Kuehn, K. A., M. J. Lemke, K. Suberkropp, and R. G. Wetzel. 2000. Microbial biomass and production associated with decaying leaf litter of the emergent macrophyteJuncus effusus. Limnology and Oceanography 45: 862–70.

    Article  CAS  Google Scholar 

  • Kuehn, K. A. and K. Suberkropp. 1998. Decomposition of standing litter of the freshwater emergent macrophyteJuncus effusus. Freshwater Biology 40: 717–27.

    Article  Google Scholar 

  • McNaughton, S. 1968. Autotoxic feedback in relation to germination and seedling growth inTypha latifolia. Ecology 49: 367–69.

    Article  Google Scholar 

  • Newman, S., J. Schuette, J. B. Grace, K. Rutchey, T. Fontaine, K. R. Reddy, and M. Pietrucha. 1998. Factors influencing cattail abundance in the northern Everglades. Aquatic Botany 60: 265–80.

    Article  Google Scholar 

  • Olde Venterink, H., N. M. Pieterse, D. M. Belgers, M. J. Wassen, and P. C. Ruiter. 2002. N, P, K budgets along nutrient availability and productivity gradients in wetlands. Ecological Applications 12: 1010–26.

    Article  Google Scholar 

  • Olde Venterink, H., R. E. van der Vliet, and M. J. Wassen. 2001. Nutrient limitation along a productivity gradient in wet meadows. Plant and Soil 234: 171–79.

    Article  CAS  Google Scholar 

  • Robertson, G. P., D. C. Coleman, C. S. Bledsoe, and P. Sollins. 1999. Standard soil methods for long-term ecological research. Oxford University Press, Oxford, England.

    Google Scholar 

  • SAS. 2002. SAS Online Doc, Version 9. SAS Institute Inc, Cary, NC, USA.

    Google Scholar 

  • Sayer, E. J. 2006. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biological Reviews 81: 1–31.

    Article  PubMed  Google Scholar 

  • Stevens, M. H. H., D. E. Bunker, S. A. Schnitzer, and W. P. Carson. 2004. Establishment limitation reduces species recruitment and species richness as soil resources rise. Journal of Ecology 92: 339–47.

    Article  Google Scholar 

  • Sydes, C. and J. P. Grime. 1981a. Effects of tree leaf litter on herbaceous vegetation in deciduous woodland. 1. Field investigations. Journal of Ecology 69: 237–48.

    Article  Google Scholar 

  • Sydes, C. and J. P. Grime. 1981b. Effects of tree leaf litter on herbaceous vegetation in deciduous woodland. 2. An experimental investigation. Journal of Ecology 69: 249–62.

    Article  Google Scholar 

  • Tilman, D. 1993. Species richness of experimental productivity gradients — how important is colonization limitation? Ecology 74: 2179–91.

    Article  Google Scholar 

  • Tulbure, M. G., C. A. Johnston, and D. L. Auger. 2007. Rapid invasion of a Great Lakes coastal wetland by non-nativePhragmites australis andTypha. Journal of Great Lakes Research 33 (Special Issue 3): 269–79.

    Article  Google Scholar 

  • Vaccaro, L. 2005. Patterns, mechanisms and ecological implications of cattail (Typha spp.) dominance in Great Lakes wetlands. M.S. Thesis. Cornell University, Ithaca, NY.

    Google Scholar 

  • van der Valk, A. G. and C. B. Davis. 1978a. Primary production of praire glacial marshes. p. 21–37.In R. E. Good, D. F. Whigham, and R. L. Simpson (eds.) Freshwater Wetlands. Academic Press, Inc., New York, NY, USA.

    Google Scholar 

  • van der Valk, A. G. and C. B. Davis. 1978b. Role of seed banks in vegetation dynamics of prairie glacial marshes. Ecology 59: 322–35.

    Article  Google Scholar 

  • van der Valk, A. G., J. M. Rhymer, and H. R. Murkin. 1991. Flooding and the decomposition of litter of four emergent plant species in a prairie wetland. Wetlands 11: 1–16.

    Article  Google Scholar 

  • Wilcox, D. A., S. I. Apfelbaum, and R. D. Hiebert. 1984. Cattail invasion of sedge meadows following hydrologic disturbance in the Cowles bog wetland complex, Indiana Dunes National Lakeshore. Wetlands 4: 115–28.

    Article  Google Scholar 

  • Wilcox, D. A., J. A. Ingram, K. P. Kowalski, J. E. Meeker, M. L. Carlson, X. Yichum, K. L. Holmes, and N. J. Patterson. 2005. Evaluation of water level regulation influences in Lake Ontario and upper St. Lawrence River coastal wetland plant communities. Final project report to the International Joint Commission, Washington, DC, USA and Ottawa, ON, Canada.

    Google Scholar 

  • Wilcox, D. A., K. P. Kowalski, H. L. Hoare, M. L. Carlson, and H. N. Morgan. 2008. Cattail invasion of sedge/grass meadows in Lake Ontario: photo-interpretation analysis of sixteen wetlands over five decades. Journal of Great Lakes Research 34: 301–23.

    Article  Google Scholar 

  • Wilcox, D. A. and X. Yichun. 2007. Predicting wetland plant community responses to proposed water-level-regulation plans for Lake Ontario: GIS-based modeling. Journal of Great Lakes Research 33: 751–73.

    Article  Google Scholar 

  • Wisheu, I. C. and P. A. Keddy. 1992. Competition and centrifugal organization of plant-communities — theory and tests. Journal of Vegetation Science 3: 147–56.

    Article  Google Scholar 

  • Wolter, P. T., C. A. Johnston, and G. J. Niemi. 2006. Land use land cover change in the U.S. Great Lakes basin 1992 to 2001. Journal of Great Lakes Research 32: 607–28.

    Article  Google Scholar 

  • Woo, I. and J. B. Zedler. 2002. Can nutrients alone shift a sedge meadow towards dominance by the invasiveTypha Xglauca? Wetlands 22: 509–21.

    Article  Google Scholar 

  • Xiong, S. J., M. E. Johansson, F. M. R. Hughes, A. Hayes, K. S. Richards, and C. Nilsson. 2003. Interactive effects of soil moisture, vegetation canopy, plant litter and seed addition on plant diversity in a wetland community. Journal of Ecology 91: 976–86.

    Article  Google Scholar 

  • Xiong, S. J. and C. Nilsson. 1999. The effects of plant litter on vegetation: a meta-analysis. Journal of Ecology 87: 984–94.

    Article  Google Scholar 

  • Xiong, S. J., C. Nilsson, M. E. Johansson, and R. Jansson. 2001. Responses of riparian plants to accumulation of silt and plant litter: The importance of plant traits. Journal of Vegetation Science 12: 481–90.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn E. Vaccaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaccaro, L.E., Bedford, B.L. & Johnston, C.A. Litter accumulation promotes dominance of invasive species of cattails (Typha spp.) in Lake Ontario wetlands. Wetlands 29, 1036–1048 (2009). https://doi.org/10.1672/08-28.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/08-28.1

Key Words

Navigation