Skip to main content
Log in

Imipenem/Cilastatin

A Review of its Antibacterial Activity, Pharmacokinetic Properties and Therapeutic Efficacy

  • Drug Evaluation
  • Published:
Drugs Aims and scope Submit manuscript

Summary

Synopsis

Imipenem is the first available semisynthetic thienamycin and is administered intravenously in combination with cilastatin,1 a renal dipeptidase inhibitor that increases urinary excretion of active drug. In vitro studies have demonstrated that imipenem has an extremely wide spectrum of antibacterial activity against Gram-negative and Gram-positive aerobic and anaerobic bacteria, even against many multiresistant strains of bacteria. It is very potent against species which elaborate β-lactamases.

Imipenem in combination with equal doses of cilastatin 2 has been shown to be generally well tolerated and an effective antimicrobial for the treatment of infections of various body systems. It is likely to be most valuable as empirical treatment of mixed aerobic and anaerobic infections, bacteraemia in non-neutropenic patients and serious hospital-acquired infections.

Antibacterial Activity

Imipenem is an amidine derivative of thienamycin which has been shown to have an extremely wide spectrum of in vitro antibacterial activity, including most aerobic and anaerobic Gram-negative and Gram-positive bacteria. Indeed, at a concentration of 8 mg/L imipenem inhibits greater than 98% of clinically important species of pathogens.

Imipenem is a potent inhibitor of most species of Enterobacteriaceae (more than 95% of clinical isolates being inhibited at a concentration of 2 mg/L), even of strains exhibiting resistance to a number of antimicrobial drugs. Against Pseudomonas aeruginosa, imipenem MIC90 values generally ranged between 2 and 8 mg/L, even against some multi-resistant strains, and it was usually similar in potency to ceftazidime. P. maltophilia and many strains of P. cepacia are resistant to the effects of imipenem. Imipenem is extremely active against Gram-negative anaerobic bacteria; in the majority of in vitro studies it was the most potent antibacterial evaluated against Bacteroides and Fusobacterium species. While imipenem inhibits the majority of strains of Haemophilus influenzae and Neisseria gonorrhoeae, including penicillinase-producing strains, it is not as potent as some broad spectrum cephalosporins. Against Legionella pneumophila in vitro, imipenem was only slightly less potent than rifampicin and erythromycin (based on MIC values), and it was the most potent bactericide. Chlamydia trachomatis and Flavobacterium group IIb species are resistant to imipenem.

Most strains of staphylococci, streptococci and enterococci are susceptible to imipenem in vitro, although S. faecium strains are highly resistant and some methicillin-resistant S. aureus strains have been shown to have elevated MIC values, especially with prolonged incubation. Against Gram-positive anaerobes imipenem is very potent; it was superior to clindamycin and comparable with metronidazole. Clinical isolates, except for a few strains of Clostridium difficile, were generally very susceptible.

Imipenem is a bactericidal antimicrobial which has a strong affinity for the penicillin-binding proteins (especially PBP 2) in bacterial species investigated — usually resulting in rapid cell swelling and lysis. Generally, the MIC of imipenem for most strains is little affected by increases in inoculum size (up to 106 colony-forming units/ml), by different media (apart from thioglycolate and high-cysteine containing broths), by pH (between 5.5 and 8.5), or by the addition of horse serum (10 to 50%). Imipenem demonstrates partial or full synergy when used in combination with a number of aminoglycosides against various bacterial species, but in combination with other β-lactam drugs the interaction is normally antagonistic.

Imipenem is not only very active against most β-lactamase producing species of bacteria, it is also an effective inhibitor of some β-lactamase enzymes. It is a potent inducer of β-lactamases elaborated by various bacterial species. However, it remains a poor substrate for such enzymes and its antibacterial activity is maintained. The emergence of imipenem-resistant strains of P. aeruginosa have been documented at a rate of 17.7% among over 400 isolates of this pathogen exposed to imipenem/cilastatin in therapeutic trials. Resistance developed mainly in severely ill patients with lower respiratory tract infections, many of whom were clinically cured by the antibacterial regimen. Emergence of resistance in other bacterial species and cross-resistance to other antibacterial drugs are both rare.

Cilastatin, which is coadministered with imipenem to improve the urinary recovery of active drug, is devoid of antibacterial activity and inhibitory effects on β-lactamases, and neither potentiates nor antagonises the effects of imipenem.

Pharmacokinetics

Peak imipenem and cilastatin serum concentrations of 30 to 35 mg/L are attained immediately after intravenous infusion of imipenem/cilastatin 0.5g in healthy subjects, and imipenem concentrations are maintained above about 1 mg/L until 4 to 6 hours after infusion. Peak serum concentration and area under the concentration-time curve (AUC) appear to increase linearly with dose. Administration of cilastatin with imipenem increases the AUC by 5 to 36% compared with administration of imipenem alone. Multiple-dose studies reveal no accumulation of the drugs in healthy adult subjects.

Pharmacokinetic data best fit a 2-compartment model. The mean total apparent volumes of distribution reported for imipenem and cilastatin range from 16.3 to 29.5L and 14.6 to 20.1L, respectively, and corresponding values for the central compartment are 9.4 to 12.9L and 8.8 to 19.1L. Imipenem is up to 20% bound to human plasma protein in vitro. Following usual therapeutic dosages of imipenem/cilastatin, concentrations of imipenem likely to be active against most susceptible organisms are achieved in a variety of tissues and body fluids, including sputum, lung, tonsil, maxillary sinus, mastoid mucous membrane, kidney, prostate tissue (but not fluid), bile, bile duct tissue, female genital organs, intraperitoneal exudate, wound drainage fluid and cerebrospinal fluid. Rapid placental transfer of imipenem and cilastatin occurs, and while transfer into breast milk has not been studied in humans, it occurs in rats.

Following the administration of imipenem/cilastatin in healthy subjects, imipenem and cilastatin show similar elimination half-lives (about 1 hour), plasma clearances (0.18 to 0.22 L/h/kg) and renal clearances (0.10 to 0.16 L/h/kg). The renal clearance of imipenem is reduced to 0.04 to 0.06 L/h/kg when administered alone. Imipenem is partially metabolised to an open β-lactam ring derivative by dehydropeptidase-I in the proximal renal tubule, and 6-hour urinary recovery of active imipenem varies from 7 to 45% in individual subjects when given alone. Cilastatin inhibits dehydropeptidase-I and thus increases 6-hour urinary recovery of imipenem to 60 to 75% in all subjects when the drugs are administered as a 1: 1 combination. Almost all of radiolabelled doses of imipenem and cilastatin are recovered in urine. Most cilastatin is recovered unchanged (about 80%) and some (12%) as N-acetyl cilastatin.

In neonates, trough cilastatin plasma concentrations are about 10 times those of imipenem but no accumulation occurs with repeated doses of imipenem/cilastatin 10 mg/kg/day every 12 hours. Reduced glomerular filtration rate increases the elimination half-life and decreases the renal clearance of imipenem and cilastatin. Plasma concentrations of cilastatin are increased more than those of imipenem, which is shunted into non-renal elimination pathways. Administration of imipenem/cilastatin 0.5g every 12 hours to haemodialysis patients between dialysis treatments leads to accumulation of cilastatin but not imipenem; trough cilastatin concentrations increase to as high as 100 mg/L. Both drugs are removed from plasma by haemodialysis and a supplemental dose may be required after dialysis.

Therapeutic Trials

Cumulated results from phase II and III clinical studies worldwide reveal imipenem/cilastatin clinical efficacy rates of at least 95% for bacteraemia, urinary tract infections and obstetric and gynaecological infections. Clinical efficacy rates are greater than 90% for soft tissue, bone and joint, and intra-abdominal infections, and the clinical efficacy rate for lower respiratory tract infections is 85%. Total daily dosages of imipenem/cilastatin in these studies generally ranged from 1 to 4g.

Equally encouraging are the cumulated bacterial eradication rates: 92% for obstetric and gynaecological infections, 87% for intra-abdominal infections and 76% for lower respiratory tract infections. However, as reported with other β-lactam antibacterials, colonisation and superinfection are not uncommon with imipenem/cilastatin and occur at a similar rate to these agents. Bacterial species most frequently associated with colonisation or superinfection in imipenem-treated patients are Pseudomonas species and Staphylococcus epidermidis. Indeed, isolation of imipenem-resistant P. aeruginosa from patients infected with imipenem-susceptible strains of this species prior to therapy occurs relatively frequently, primarily in patients with serious lower respiratory tract infections, many of whom are cured clinically; cross-resistance to other antibacterial drugs is rare.

In randomised comparative trials, each of which included infections of several body systems except the central nervous system, imipenem/cilastatin appeared to be similar in clinical efficacy to cefotaxime and ciprofloxacin in moderate to severe infections and to cefazolin in mild to moderate infections. Imipenem/cilastatin clinically cured or improved a greater percentage of patients than did gentamicin plus clindamicin in 4 comparative studies and a greater percentage of patients than did latamoxef (moxalactam) in 3 comparative studies; 4 of these studies analysed the results statistically, and 2 found statistically significant differences in clinical efficacy between treatments. In the first of these 2 studies imipenem/cilastatin 0.5g 6-hourly cured or improved 96% of 56 patients with serious infections versus 84% of 62 patients treated with gentamicin (dose adjusted according to serum concentrations) plus clindamycin 0.6g 6-hourly (p < 0.05); bacterial eradication rates did not differ significantly. In the second study the same dosage of imipenem/cilastatin cured or improved 95% of 153 patients versus 87% of 158 patients treated with latamoxef 2g 8-hourly or 1g 6- to 8-hourly.

In a third comparative study, the durations of hospitalisation and fever were significantly (p < 0.02) shorter with imipenem/cilastatin than gentamicin/clindamycin. Three of these comparative studies reported a lower incidence of laboratory abnormalities suggesting renal toxicity was less of a problem with imipenem/cilastatin than with gentamicin/clindamycin.

Unfortunately, controlled comparative studies of imipenem/cilastatin in individual types of infection are few. Imipenem/cilastatin 0.5g 6-hourly was not significantly different in clinical efficacy from gentamicin (dosage adjusted according to serum concentrations) plus clindamycin 0.6g 6-hourly in 99 patients with perforated and/or gangrenous appendicitis, or in 24 patients with moderately severe abdominal infections. However, both of these studies found that the duration of fever and hospitalisation were significantly (p < 0.05) shorter among the imipenem/cilastatin-treated patients. Imipenem/cilastatin 0.25g 3 times daily cured or improved 94% of 47 patients with intra-abdominal infections versus 89% of 46 patients cured with clindamycin 0.6g 6-hourly plus netilmicin (dosage adjusted according to serum concentration); duration of hospitalisation was also shorter among the imipenem/cilastatin patients, but statistical analyses were not provided for either of these results. Imipenem/cilastatin 0.5g 6-hourly appeared similar in clinical efficacy to latamoxef 2g 8-hourly in 45 patients with obstetric and gynaecological infections but no statistical analysis was provided. 98% of 42 patients administered imipenem/cilastatin 0.5g 6-hourly for infections of the skin were cured or improved versus 84% of 50 patients administered latamoxef 2g 8-hourly (p = 0.03).

Side Effects

Imipenem/cilastatin is generally well tolerated. The most commonly reported side effects are similar to those of other β-lactam antibacterials and include diarrhoea, nausea and vomiting, skin rashes, phlebitis at the injection site, transient elevation of liver function test results and eosinophilia. Seizures have occurred in patients with CNS disorders, renal failure or other predisposing factors to seizure activity.

Dosage and Administration

The recommended adult dosage of imipenem/cilastatin is 0.25, 0.5 or 1g administered intravenously 6- to 8-hourly depending on the type and severity of infection: in moderate infection 1g every 12 hours may be used. Dosage should be reduced in patients with impairment of renal function, beginning at a creatinine clearance of 70 ml/min/1.73m2. Patients with a creatinine clearance of less than 5 ml/min/1.73m2 should receive imipenem/cilastatin only if on haemodialysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acar JF. Therapy for lower respiratory tract infections with imipenem/cilastatin: a review of worldwide experience. Reviews of Infectious Diseases 7(Suppl. 3): 513–517, 1985

    Google Scholar 

  • Acar JF, Goldstein FW, Kitzis MD, Gutmann L. Activity of imipenem on aerobic bacteria. Journal of Antimicrobial Chemotherapy 12(Suppl. D): 37–45, 1983

    PubMed  CAS  Google Scholar 

  • Ahonkhai VI, Cherubin CE, Sierra MF, Bokkenheuser VD, Shulman MA, et al. In vitro susceptibility of Campylobacter fetus subsp. jejuni to N-formimidoyl thienamycin, rosaramicin, cefoperazone, and other antimicrobial agents. Antimicrobial Agents and Chemotherapy 20: 850–851, 1981

    PubMed  CAS  Google Scholar 

  • Ahonkhai VI, Cyhan GM, Brown KR. Clinical evaluation of imipenem/cilastatin (primaxin) in pediatric infections. Abstract no. P-44-61. 14th International Congress of Chemotherapy, Kyoto, Jun 23–28, 1985

  • Ahonkhai VI, Cyhan GM, Brown KR. Imipenem-Cilastatin: efficacy and safety in a multicenter study in children. Abstract no. 1402. 9th International Congress of Infectious and Parasitic Diseases, Munich, Jul 20–26, 1986

  • Ahonkhai VI, Sierra MF, Cherubin CE, Shulman MA. The comparative activities of N-formimidoyl thienamycin (MK 0787), moxalactam, cefotaxime and cefoperazone against Yersinia enterocolitica and Listeria monocytogenes. Journal of Antimicrobial Chemotherapy 9: 411–413, 1982

    PubMed  CAS  Google Scholar 

  • Aldridge KE, Sanders CV, Janney A, Faro S, Marier RL. Comparison of the activities of penicillin G and new β-betam antibiotics against clinical isolates of Bacteroides species. Antimicrobial Agents and Chemotherapy 26: 410–413, 1984

    PubMed  CAS  Google Scholar 

  • Alpert G, Dagan R, Connor E, Campos JM, Bloh AM, et al. Imipenem/cilastatin for the treatment of infections in hospitalized children. American Journal of Diseases of Children 139: 1153–1156, 1985

    PubMed  CAS  Google Scholar 

  • Ampel NM, Moon-McDermott L, Keating M, Zinner SH. In-vitro activity of aztreonam in combination with four other antibiotics against gram-negative bacilli and Staphylococcus aureus. Journal of Antimicrobial Chemotherapy 13: 398–399, 1984

    PubMed  CAS  Google Scholar 

  • Appelbaum PC, Tamim J, Stavitz J, Aber RC, Pankuch GA. Sensitivity of 341 non-fermentative Gram-negative bacteria to seven beta-lactam antibiotics. European Journal of Clinical Microbiology 1: 159–165, 1982

    PubMed  CAS  Google Scholar 

  • Asahi Y, Watanabe K, Kesado T, Ueno K. Antibacterial activity of imipenem/cilastatin sodium against anaerobic bacteria. Chemotherapy (Tokyo) 33(Suppl. 4): 54–73, 1985

    CAS  Google Scholar 

  • Auckenthaler R, Wilson WR, Wright AS, Washington II JA, Durack DT, et al. Lack of in vivo and in vitro bactericidal activity of N-formimidoyl thienamycin against enterococci. Antimicrobial Agents and Chemotherapy 22: 448–452, 1982

    PubMed  CAS  Google Scholar 

  • Aznar J, Garcia Iglesias MC, Perea EJ. Comparative ability of imipenem (N-formimidoyl thienamycin) on enterococci and its interactions with aminoglycosides. Journal of Antimicrobial Chemotherapy 13: 129–132, 1984

    PubMed  CAS  Google Scholar 

  • Bannatyne RM, Cheung R. Susceptibility of Bordetella pertussis to cephalosporin derivatives and imipenem. Antimicrobial Agents and Chemotherapy 26: 604–605, 1984

    PubMed  CAS  Google Scholar 

  • Bansal MB, Chuah S-K, Thadepalli H. Susceptibility of intestinal anaerobes to new beta-lactam antibiotics. Chemotherapy 30: 237–243, 1984

    PubMed  CAS  Google Scholar 

  • Baquero F, Culebras E, Patron C, Perez-Diaz JC, Vicente MF. Postantibiotic effect of imipenem on Gram-positive and Gram-negative bacteria. Imipenem: a unique and significant advance in antibiotic therapy, pp. 14–15, Rome, April 25–26, 1986

  • Baron EJ, Berlin OGW, Bruckner DA, Young LS. Antimicrobial combinations with N-formimidoyl thienamycin and amikacin inhibit Mycobacterium avium-intracellulare (MAI). Abstract no. 629. 23rd Interscience Conference on Antimicrobial Agents and Chemotherapy, Las Vegas, Oct, 1983

  • Baron EJ, Hindier JA. Bioactivity of imipenem as a function of medium, time, and temperature. Antimicrobial Agents and Chemotherapy 25: 781–782, 1984

    PubMed  CAS  Google Scholar 

  • Barry AL, Jones RN, Thornsberry C, Ayers LW, Kundargi R. Imipenem [N-formimidoyl thienamycin]: in vitro antimicrobial activity and β-lactamase stability. Diagnostic Microbiology and Infectious Disease 3: 93–104, 1985

    PubMed  CAS  Google Scholar 

  • Bartmann K, Tarbuc R. N-Formimidoyl-Thienamycin. in vitro aktivität bei Bakterien mit Resistenz gegen Beta-Laktam-Antibiotika oder Gentamicin. Infection 10: 361–370, 1982

    PubMed  CAS  Google Scholar 

  • Barza M. Imipenem: first of a new class of beta-lactam antibiotics. Annals of Internal Medicine 103: 552–560, 1985

    PubMed  CAS  Google Scholar 

  • Bassey CM, Baltch AL, Smith RP, Conley PE. Comparative in vitro activities of enoxacin (C1-919, AT-2266) and eleven antipseudomonal agents against aminoglycoside-susceptible and -resistant Pseudomonas aeruginosa strains. Antimicrobial Agents and Chemotherapy 26: 417–418, 1984

    PubMed  CAS  Google Scholar 

  • Bauernfeind A. Comparative in vitro activity of Sch 34343, imipenem, cefpirome and cefotaxime. Journal of Antimicrobial Chemotherapy 15(Suppl. C): 155–164, 1985

    PubMed  Google Scholar 

  • Baumgartner JD, Glauser MP. Comparative imipenem treatment of Staphylococcus aureus endocarditis in the rat. Journal of Antimicrobial Chemotherapy 12(Suppl. D): 79–87, 1983a

    PubMed  CAS  Google Scholar 

  • Baumgartner JD, Glauser MP. Comparative study of imipenem in severe infections. Journal of Antimicrobial Chemotherapy 12(Suppl. D): 141–148, 1983b

    PubMed  Google Scholar 

  • Berkeley AS, Freedman KS, Hirsch JC, Ledger WV. Randomized comparative trial of imipenem/cilastatin and moxalactam in the treatment of serious obstetric and gynecologic infections. Surgery, Gynecology and Obstetrics 162: 204–208, 1986

    PubMed  CAS  Google Scholar 

  • Berkeley AS, Strausbaugh LJ, Cohen AW, Freedman KS, Ledger WJ. Randomized, comparative trial of thienamycin formamidine/potentiator (MK0787/MK0791) and moxalactam in the treatment of serious obstetric and gynecological infections. Abstract no. 207. 23rd Interscience Conference on Antimicrobial Agents and Chemotherapy, Las Vegas, 23–26 Oct, 1983

  • Berman SJ, Sugihara JG, Nakamura JM, Kawahara KK, Wong EGC, et al. Multiple-dose study of imipenem cilastatin in patients with end-stage renal disease undergoing long-term hemodialysis. American Journal of Medicine 78(Suppl. 6A): 113–116, 1985

    PubMed  CAS  Google Scholar 

  • Berry A, Archer G. Treatment of experimental methicillin-resistant Staphylococcus epidermidis (MRSE) endocarditis with imipenem. Abstracts of the 24th ICAAC, p. 151, 1984

  • Bertram MA, Bruckner DA, Young LS. In vitro activity of HR 810, a new caphalosporin. Antimicrobial Agents and Chemotherapy 26: 277–279, 1984

    PubMed  CAS  Google Scholar 

  • Bertram MA, Young LS. Imipenem antagonism of the in vitro activity of piperacillin against Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 26: 272–274, 1984

    PubMed  CAS  Google Scholar 

  • Birnbaum J, Kahan FM, Kropp H, Macdonald JS. Carbapenems, a new class of beta-lactam antibiotics. American Journal of Medicine 78(Suppl. 6A): 3–21, 1985

    PubMed  CAS  Google Scholar 

  • Blumberg PM, Strominger JL. Interaction of penicillin with the bacterial cell: penicillin-binding proteins and penicillin-sensitive enzymes. Bacteriological Reviews 38: 291–335, 1974

    PubMed  CAS  Google Scholar 

  • Blumenthal RM, Raeder R, Takemoto CD, Freimer EH. Occurrence and expression of imipemide [N-formimidoyl thienamycin] resistance in clinical isolates of coagulase-negative staphylococci. Antimicrobial Agents and Chemotherapy 24: 61–69, 1983

    PubMed  CAS  Google Scholar 

  • Blundell JK, Perkins HR. Effects of β-lactam antibiotics on peptidoglycan synthesis in growing Neisseria gonorrhoeae, including changes in the degree of o-acetylatium. Journal of Bacteriology 147: 633–641, 1981

    PubMed  CAS  Google Scholar 

  • Bodey GP, Alvarez ME, Jones PG, Rolston KVI, Steehammer L, et al. Imipenem-cilastatin as initial therapy for febrile cancer patients. Antimicrobial Agents and Chemotherapy 30: 211–214, 1986

    PubMed  CAS  Google Scholar 

  • Borobio MV, Nogales MC, Pascual A, Perea EJ. N-Formimidoyl-thienamycin activity against anaerobes: effect of the inoculum, pH and culture media. Journal of Antimicrobial Chemotherapy 8: 213–218, 1981

    PubMed  CAS  Google Scholar 

  • Bourbeau P, Campos JM. Current antibiotic susceptibility of group A β-hemolytic streptococci. Journal of Infectious Diseases 145: 916, 1982

    PubMed  CAS  Google Scholar 

  • Braveny I. In vitro activity of imipenem — a review. European Journal of Clinical Microbiology 3: 451–462, 1984

    Google Scholar 

  • Bremner DA. Azthreonam activity against gram-negative bacilli. Chemotherapy 30: 44–48, 1984

    PubMed  CAS  Google Scholar 

  • Breyer S, Graninger W, Schuster R, Diridl G, Georgopoulos A, et al. Imipenem in the treatment of septicemia. Abstract P-57-122. 14th International Congress of Chemotherapy, Kyoto, 23–28 Jun, 1985

  • Brier GL, Black HR. Induced resistance to third generation β-lactam antibiotics by cefoxitin and N-formimidoyl-thienamycin. Abstract no. 892, ICAAC, Las Vegas, 1983

  • Brorson J-E, Larsson P. Cefoxitin and imipenem (N-formimidoyl thienamycin) can be antagonistic to aztreonam. Journal of Antimicrobial Chemotherapy 14: 667–671, 1984

    PubMed  CAS  Google Scholar 

  • Brorson J-E, Larsson P. Sub MIC levels of cefoxitin and imipenem affect disc diffusion zone diameters to cefotaxime, ceftazidime, piperacillin and imipenem for Pseudomas aeruginosa. Journal of Antimicrobial Chemotherapy 18: 287–289, 1986

    PubMed  CAS  Google Scholar 

  • Brown JE, Bene VED, Collins CD. In vitro activity of N-formimidoyl thienamycin, moxalactam, and other new beta-lactam agents against Bacteroides fragilis: contribution of beta-lactamase to resistance. Antimicrobial Agents and Chemotherapy 19: 248–252, 1981

    PubMed  CAS  Google Scholar 

  • Bustamante CI, Drusano GL, Tatem BA, Standiford HC. Post-antibiotic effect of imipenem on Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 26: 678–682, 1984

    PubMed  CAS  Google Scholar 

  • Calandra GB, Brown KR, Grad LC, Ahonkhai VI, Wang C, et al. Review of adverse experiences and tolerability in the first 2,516 patients treated with imipenem/cilastatin. American Journal of Medicine 78(Suppl. 6A): 73–78, 1985b

    PubMed  CAS  Google Scholar 

  • Calandra GB, Hesney M, Brown KR. Imipenem/cilastatin therapy of serious infections: a US multicenter noncomparative trial. Clinical Therapeutics 7: 225–238, 1985a

    PubMed  CAS  Google Scholar 

  • Calandra GB, Hesney M, Grad C. Multiclinic, randomized study of comparative efficacy, safety and tolerance of imipenem/cilastatin and moxalactam. European Journal of Clinical Microbiology 3: 478–487, 1984

    PubMed  CAS  Google Scholar 

  • Calandra GB, Ricci FM, Wang C, Brown KR. Safety and tolerance comparison of imipenem-cilastatin to cephalothin and cefazolin. Journal of Antimicrobial Chemotherapy 12(Suppl. D): 125–131, 1983

    PubMed  Google Scholar 

  • Calandra G, Ricci F, Wang C, Brown K. Cross-resistance and imipenem. Lancet 2: 340–341, 1986

    PubMed  CAS  Google Scholar 

  • Calandra GB, Wang C. Safety of imipenem/cilastatin: worldwide clinical experience based on 3,470 patients. Presented at the symposium ‘Imipenem: a Unique and Significant Advance in Antibiotic Therapy’, Rome, April, 1986

  • Calderwood SB, Gardella A, Philippon AM, Jacoby GA, Moellering Jr RC. Effects of azlocillin in combination with clavulanic acid, sulbactam, and N-formimidoyl thienamycin against β-lactamase-producing, carbenicillin-resistant Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 22: 266–271, 1982

    PubMed  CAS  Google Scholar 

  • Campos JM, Gill CJ, Ahonkhai VI. In vitro activity of imipenem against 100 strains of serotype b and nontypable Haemophilus influenzae, including strains resistant to ampicillin, chloramphenicol or both. Journal of Antimicrobial Chemotherapy 16: 549–554, 1985

    PubMed  CAS  Google Scholar 

  • Chabbert YA, Jaffé A. Sch 29482: activity against susceptible and β-lactam resistant variants of enterobacteriaceae. Journal of Antimicrobial Chemotherapy 9(Suppl. C): 203–212, 1982

    PubMed  CAS  Google Scholar 

  • Chadwick EG, Yoger R, Shulman ST. Synergy between N-formimidoyl thienamycin (T) and amikacin (A) in a new infant rat model of neutropenia and Ps. aeruginosa (PA) sepsis. Abstracts of the 84th Annual Meeting of the American Society of Microbiology, A17, St. Louis, Mar, 1984

  • Chau PY, Ling J, Ng WS. Cefoperazone against carbenicillin-resistant isolates of Pseudomonas aeruginosa: comparison with other newer cephalosporins and N-formimidoyl thienamycin. Journal of Antimicrobial Chemotherapy 12: 337–345, 1983

    PubMed  CAS  Google Scholar 

  • Chin NX, Neu HC. The induction of β-lactamase in Pseudomonas aeurginosa, Enterobacter aerogenes and Citrobacter freundii by β-lactams. Abstract no. 1239, ICAAC, Washington DC, 1984

  • Cho N, Fukunaga K, Kunii K. Fundamental and clinical evaluation of imipenem/cilastatin sodium in the field of obstetrics and gynecology. Chemotherapy (Tokyo) 33(Suppl. 4): 1046–1063, 1985

    CAS  Google Scholar 

  • Chokkavelu V, Chandrasekar P, Rolston KVI, Lefrock JL. Activity of various antimicrobials against methicillin-resistant Staphylococcus aureus. Abstracts of the 23rd Interscience Conference on Antimicrobial Agents and Chemotherapy, p. 181, Us Vegas, 1983

  • Chokkavelu V, Chandrasekar P, Rolston K, Le Frock JL, Schell RF. Activity of eleven antimicrobial agents against methicillin-methicillin- and rifampin-resistant Staphylococcus aureus. Chemotherapy 30: 97–101, 1984

    PubMed  CAS  Google Scholar 

  • Cohn DL, Reimer LG, Relier B. Comparative in vitro activity of MK0787 (N-formimidoyl thienamycin) against 540 blood culture isolates. Journal of Antimicrobial Chemotherapy 9: 183–194, 1982

    PubMed  CAS  Google Scholar 

  • Corrado ML, Cherubin CE, Shulman M, Moen J, Jhagroo M. The activity of gentamicin and N-formimidoyl thienamycin (MK0787) on Pseudomonas aeruginosa at pH 7.4 and 7.0. Journal of Antimicrobial Chemotherapy 7: 677–680, 1981

    PubMed  CAS  Google Scholar 

  • Corrado ML, Landesman SH, Cherubin CE. Influence of inoculum size on activity of cefoperazone, cefotaxime, moxalactam, piperacillin, and N-formimidoyl thienamycin (MK 0787) against Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 18: 893–896, 1980

    PubMed  CAS  Google Scholar 

  • Cuchural GJ, Tally FP. Bacteroides fragilis resistant to imipenem. Abstract no. 994, ICAAC, Washington DC, 1984

  • Cullmann W, Opferkuch W, Stieglitz M, Werkmeister U. A comparison of the antibacterial activities of N-formimidoyl thienamycin (MK0787) with those of other recently developed β-lactam derivatives. Antimicrobial Agents and Chemotherapy 22: 302–307, 1982

    PubMed  CAS  Google Scholar 

  • Cullmann W, Stieglitz U, Werkmeister U, Opferkuch W. Susceptibility of ampicillin-resistant strains of Enterobacteria and Pseudomonas to thienamycin. Proceedings of the 12th International Congress of Chemotherapy, Florence, Jul, 1981

  • Cynamon MH, Granato PA. In vitro comparative activity of moxalactam, GR 20263, and N-formimidoyl thienamycin to other beta-lactam antibiotics and tobramycin against Enterobacteriaceae and Staphyloccci. Chemotherapy 28: 204–208, 1982

    PubMed  CAS  Google Scholar 

  • Cynamon MH, Palmer GS. In vitro susceptibility of Mycobacterium fortuitum to N-formimidoyl thienamycin and several cephamycins. Antimicrobial Agents and Chemotherapy 22: 1079–1081, 1982

    PubMed  CAS  Google Scholar 

  • Cynamon MH, Palmer GS. In vitro susceptibility of Mycobacterium intracellulare to N-formimidoyl thienamycin, rifampin and amikacin. American Review of Respiratory Diseases 127: 193, 1983

    Google Scholar 

  • Danziger LH, Creger RJ, Stellato TA, Hau T. Randomized trial of gentamicin and clindamycin vs imipenem/cilastatin in serious infections. Abstract no. 53. Drug Intelligence and Clinical Pharmacy 19: 455, 1985

    Google Scholar 

  • Dealy DH, Duma RJ, Tartaglione TA, Beightol LA, Patterson PM. Penetration of primaxin (N-formimidoyl thienamycin and cilastatin) into human cerebrospinal fluid. Abstract no. S-78-4. 14th International Congress of Chemotherapy, Kyoto, Japan, 23–28, Jun, 1985

  • Denys GA, Jerris RC, Swenson JM, Thornsberry C. Susceptibility of Propionibacterium acnes clinical isolates to 22 antimicrobial agents. Antimicrobial Agents and Chemotherapy 23: 335–337, 1983

    PubMed  CAS  Google Scholar 

  • Dewsnup DH, Wright DN. In vitro susceptibility of Nocardia asteroides to 25 antimicrobial agents. Antimicrobial Agents and Chemotherapy 25: 165–167, 1984

    PubMed  CAS  Google Scholar 

  • Diaz-Mitoma F, Harding GKM, Louie TJ, Thomson M, James M, et al. Prospective randomized comparison of imipenem/cilastatin and cefotaxime for treatment of lung, soft tissue and renal infections. Reviews of Infectious Diseases 7(Suppl. 3): 452–457, 1985

    Google Scholar 

  • Dickinson G, Rodriguez K, Arcey S, Alea A, Greenman R. Efficacy of imipenem/cilastatin in endocarditis. American Journal of Medicine 78(Suppl. 6A): 117–121, 1985

    PubMed  CAS  Google Scholar 

  • Digranes A, Dibb WL, Benonisen E, Salveson A. Ro 17-2301: In vitro comparison with aztreonam, imipenem, ceftazidime, cefotaxime and netilmicin. Chemotherapy 31: 279–285, 1985

    PubMed  CAS  Google Scholar 

  • Digranes A, Dibb WL, Benonisen E, Salveson A. Ro 17-2301: in vitro comparison with aztreonam, imipenem, ceftazidime, cefotaxime and netilmicin. Chemotherapy 31: 279–285, 1985

    PubMed  CAS  Google Scholar 

  • Dillon JR, Pauzé M, Yeung H, Bezanson GS. Comparison of the in vitro activity of Sch 29482 with thirteen other β-lactam antibiotics against Neisseria meningitidis and Neisseria gonorrhoea (including penicillinase-producing isolates). Journal of Antimicrobial Chemotherapy 9(Suppl. C): 175–180, 1982

    PubMed  CAS  Google Scholar 

  • Donabedian H, Freimer EH. Pathogenesis and treatment of endocarditis. American Journal of Medicine 78(Suppl. 6A): 127–132, 1985

    PubMed  CAS  Google Scholar 

  • Drusano G. A review of the pharmacology of imipenem/cilastatin. Presented at symposium Imipenem: a unique and significant advance in antibiotic therapy, pp. 16–18, Rome, April 25–26, 1986 p. 16–18, 1986

  • Drusano GL, Standiford HC. Pharmacokinetic profile of imipenem/cilastatin in normal volunteers. American Journal of Medicine 78(Suppl. 6A): 47–53, 1985

    PubMed  CAS  Google Scholar 

  • Drusano GL, Standiford HC, Bustamante C, Forrest A, Rivera G, et al. Multiple-dose pharmacokinetics of imipenem-cilastatin. Antimicrobial Agents and Chemotherapy 26: 715–721, 1984

    PubMed  CAS  Google Scholar 

  • Dubreuil L, Devos J, Romond C. Étude de la sensibilité in vitro des bacilles gram négatifs anaérobies stricts vis-à-vis de NF thiénamycine et de diverses céphalosporines. Pathologie Biologie 32: 429–432, 1984

    PubMed  CAS  Google Scholar 

  • Dudek EJ, Stephenson JD, Bohnhoff M, Lerner SA. Susceptibility of Neisseria meningitidis and Neisseria gonorrhoeae isolates to N-formimidoyl thienamycin. Antimicrobial Agents and Chemotherapy 22: 926–929, 1982

    PubMed  CAS  Google Scholar 

  • Edelstein PH. Imipenem in legionnaires’ disease. Lancet 2: 757, 1984

    PubMed  CAS  Google Scholar 

  • Eley A, Greenwood D. Beta-lactamases of type culture strains of the Bacteroides fragilis group and of strains that hydrolyse cefoxitin, latamoxef and imipenem. Journal of Medical Microbiology 21: 49–57, 1986

    PubMed  CAS  Google Scholar 

  • Eliopoulos GM, Moellering Jr RC. Susceptibility of enterococci and Listeria monocytogenes to N-formimidoyl thienamycin alone and in combination with an aminoglycoside. Antimicrobial Agents and Chemotherapy 19: 789–793, 1981

    PubMed  CAS  Google Scholar 

  • Elliott TSJ, Eley A, Cowlishaw A. Stability of gentamicin in combination with selected new β-lactam antibiotics. Journal of Antimicrobial Chemotherapy 14: 668, 1984

    PubMed  CAS  Google Scholar 

  • Elliott TSJ, Eley A, Cowlishaw A. Stability of tombramycin in combination with selected new β-lactam antibiotics. Journal of Antimicrobial Chemotherapy 17: 680–681, 1986

    PubMed  CAS  Google Scholar 

  • Elliott TSJ, Greenwood D. The morphological response of Pseudomonas aeruginosa to azthreonam, cefoperazone, ceftazidime and N-formidoyl thienamycin. Journal of Medical Microbiology 17: 159–169, 1984

    PubMed  CAS  Google Scholar 

  • Enciso MD, Lindemann MLM, Altés AG. In vitro evaluation of N-formimidoyl thienamycin (MK0787) combined with amikacin against gram-negative bacilli and Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 22: 1064–1066, 1982

    Google Scholar 

  • Eng RHK, Smith SM, Cherubin C. Inoculum effect of new β-lactam antibiotics on Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 26: 42–47, 1984

    PubMed  CAS  Google Scholar 

  • Eron LJ. Imipenem/cilastatin therapy of bacteremia. American Journal of Medicine 78(Suppl. 6A): 95–99, 1985

    PubMed  CAS  Google Scholar 

  • Eron LJ, Hixon DL, Park CH, Goldenberg RI, Poretz DM. Imipenem versus moxalactam in the treatment of serious infections. Antimicrobial Agents and Chemotherapy 24: 841–846, 1983

    PubMed  CAS  Google Scholar 

  • Fainstein V, LeBlanc B, Bodey GP. Comparative in vitro study of teichomycin A2. Antimicrobial Agents and Chemotherapy 23: 497–499, 1983

    PubMed  CAS  Google Scholar 

  • Fan W, del Busto R, Love M, Markowitz N, Cendrowski C, et al. Imipenem-cilastatin in the treatment of methicillin-sensitive and methicillin-resistant Staphylococcus aureus infection. Antimicrobial Agents and Chemotherapy 29: 26–29, 1986

    PubMed  CAS  Google Scholar 

  • Farrell ID, Barker J, Chiodini PL, Hutchison JGP, Geddes AM. The activity of imipenem on Legionella pneumophila, with a note on the treatment of two cases. Journal of Antimicrobial Chemotherapy 16: 61–65, 1985

    PubMed  CAS  Google Scholar 

  • Fass RJ. Comparative in vitro activities of third-generation cephalosporins. Archives of Internal Medicine 143: 1743–1745, 1983

    PubMed  CAS  Google Scholar 

  • Ferguson RK, Vlasss PH, Clementi RA, Rogers JD, Bland JA, et al. Bioavailability of imipenem and cilastatin following combined intramuscular administration. Abstract no. B14. Clinical Pharmacology and Therapeutics 37: 195, 1985

    Google Scholar 

  • Fernandes CJ, Stevens DA, Ackerman VP. Comparative antibacterial activities of new β-lactam antibiotics against Pseudomonas aeruginosa. Chemotherapy 31: 292–269, 1985

    PubMed  CAS  Google Scholar 

  • Fernandes CJ, Stevens DA, Murray SI, Ackerman VP. An evaluation of recently developed antibiotics. Journal of Antimicrobial Chemotherapy 12: 577–585, 1983

    PubMed  CAS  Google Scholar 

  • Finlay KR, Carlson CL, Chow AW. Ocular penetration of N-formimidoyl thienamycin (MK-787) and potentiation by dipeptidase inhibitor (MK-791). Investigative Ophthalmology and Visual Science 24: 1147–1149, 1983

    PubMed  CAS  Google Scholar 

  • Fitzgeorge RB, Gibson DH, Jepras RI, Baskerville A. Efficacy of imipenem in experimental Legionnaires’ disease. Lancet 1: 633–634, 1985

    PubMed  CAS  Google Scholar 

  • Follath F, Geddes AM, Spring P, Ball GD, Jones KH, et al. Tolerability and pharmacokinetics of single doses of N-formimidoyl-thienamycin. Abstract no. 590, 21st Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, USA, 4–6 Nov, 1981

  • Forbes BA, McClatchey KD, Schaberg DR. Subinhibitory concentrations of imipenem induce increased resistance to methicillin and imipenem in vitro in methicillin-resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 25: 491–493, 1984

    PubMed  CAS  Google Scholar 

  • Forward KR, Harding GKM, Gray G, Urias B, Ronald AR. Comparative antibacterial activity of imipenem and four third-generation cephalosporins against 736 blood culture isolates. Current Therapeutic Research 39: 987–996, 1986

    CAS  Google Scholar 

  • Freij BJ, McCracker Jr GH, Olsen KD, Threlkeld N. Pharmacokinetics of imipenem-cilastatin in neonates. Antimicrobial Agents and Chemotherapy 27: 431–435, 1985

    PubMed  CAS  Google Scholar 

  • Freimer EH, Donabedian H, Raeder R, Ribner BS. Empirical use of imipenem as the sole antibiotic in the treatment of serious infections. Journal of Antimicrobial Chemotherapy 16: 449–507, 1985

    Google Scholar 

  • Fuse A, Ogashiwa M, Inoue M, Mitsuhashi S. In vitro and in vivo antibacterial activity of imipenem/cilastatin sodium. Chemotherapy (Tokyo) 33(Suppl. 4): 1–13, 1985

    CAS  Google Scholar 

  • Garcia I, Bodey GP, Fainstein V, Ho DH, LeBlanc B. In vitro activity of Win49375 compared with those of other antibiotics in isolates from cancer patients. Antimicrobial Agents and Chemotherapy 26: 421–423, 1984

    PubMed  CAS  Google Scholar 

  • Garcia I, Fainstein V, LeBlanc B, Bodey GP. In vitro activities of new β-lactam antibiotics against Acinetobacter spp. Antimicrobial Agents and Chemotherapy 24: 297–299, 1983

    PubMed  CAS  Google Scholar 

  • Garcia-Rodriguez JA, Gomez-Garcia AC, Aguero J, Garcia-Sanchez JE. In vitro susceptibility of Nocardia and Rhodococcus to fourteen β-lactam antibiotics. Journal of Antimicrobial Chemotherapy 10: 564–565, 1982

    PubMed  CAS  Google Scholar 

  • Georgopapadakou NH, Smith SA, Sykes RB. Penicillin-binding proteins in Bacteroides fragilis. Journal of Antibiotics 36: 907–910, 1983

    PubMed  CAS  Google Scholar 

  • Gibson TP, Demetriades JL, Bland JA. Imipenem/cilastatin: pharmacokinetic profile in renal insufficiency. American Journal of Medicine 78(Suppl. 6A): 54–61, 1985

    PubMed  CAS  Google Scholar 

  • Giovenella AJ, Grappel SF, Newman DJ, Nisbet LJ. Induction of beta-lactamase activity in Pseudomonas, Serratia, Enterobacter, Morganella and Providencia species by N-formimidoyl thienamycin. Abstract no. 1233, ICAAC, Washington DC, 1984

  • Gnarpe H, Belsheim J, Blomqvist C, Lundbäck A. Stimulation of granulocyte functions in vitro by imipenem and the renal enzyme inhibitor MK0791. Antimicrobial Agents and Chemotherapy 25: 179–181, 1984

    PubMed  CAS  Google Scholar 

  • Goldstein EJC, Citron DM. Comparative in vitro activities of amoxicillin-clavulanic acid and imipenem against anaerobic bacteria isolated from community hospitals. Antimicrobial Agents and Chemotherapy 29: 158–160, 1986

    PubMed  CAS  Google Scholar 

  • Goldstein EJC, Gombert ME, Agyare EO. Susceptibility of Eikenella corrodens to newer beta-lactam antibiotics. Antimicrobial Agents and Chemotherapy 18: 832–833, 1980

    PubMed  CAS  Google Scholar 

  • Gombert ME. Susceptibility of Nocardia asteroides to various antibiotics, including newer beta-lactams, trimethoprim — sulfamethoxazole, amikacin, and N-formimidoyl thienamycin. Antimicrobial Agents and Chemotherapy 21: 1011–1012, 1982

    PubMed  CAS  Google Scholar 

  • Gombert ME, Aulicmo TM. Synergism of imipenem and amikacin in combination with other antibiotics against Nocardia asteroides. Antimicrobial Agents and Chemotherapy 24: 810–811, 1983

    PubMed  CAS  Google Scholar 

  • Gombert ME, Aulicino TM, DuBouchet L, Silverman GE, Sheinbaum WM. Therapy of experimental cerebral nocardiosis with imipenem, amikacin, trimethoprim-sulfamethazole, and minocycline. Antimicrobial Agents and Chemotherapy 30: 270–273, 1986

    PubMed  CAS  Google Scholar 

  • Gombert ME, Berkowitz LB, Cummings MC. Synergistic effect of N-formimidoyl thienamycin with gentamicin and amikacin against Streptococcus faecalis. Antimicrobial Agents and Chemotherapy 23: 245–247, 1983

    PubMed  CAS  Google Scholar 

  • Gonzenbach HR, Simmen HP, Angwerd R. Imipenem/cilastatin vs netilmicin plus clindamycin: a controlled and randomized comparison in intra-abdominal infections. Presented at symposium ‘Imipenem: A Unique and Significant Advance in Antibiotic Therapy’, Rome, April, 1986

  • Gootz TD, Sanders CC. Characterization of β-lactamase induction in Enterobacter cloacae. Antimicrobial Agents and Chemotherapy 23: 91–97, 1983

    PubMed  CAS  Google Scholar 

  • Goto S, Tsuji A, Okumoto Y, Fuse A, Ogawa, et al. Bacteriological evaluation of imipenem, a new carbapenem: in vitro and in vivo antibacterial activity. Chemotherapy (Tokyo) 33(Suppl. 4): 14–42, 1985

    CAS  Google Scholar 

  • von Graevenitz A, Bucher C. The effect of N-formimidoyl thienamycin, ceftazidime, cefotiam, ceftriaxone and cefotaxime on non-fermentative Gram-negative rods, Aeromonas, Plesiomonas and Enterobacter agglomerans. Infection 10: 293–298, 1982

    Google Scholar 

  • Gravallese DA, Musson DG, Pauliukonis LT, Bayne WF. Determination of imipenem (N-formimidoyl thienamycin) in human plasma and wire by high-performance liquid chromatography, comparison with microbiological methodology and stability. Journal of Chromatography 310: 71–84, 1984

    PubMed  CAS  Google Scholar 

  • Gruber WC, Rerch MA, Garcia-Prats JA, Edwards MS, Baker CJ. Single-dose pharmacokinetics of imipenem-cilastatin in neonates. Antimicrobial Agents and Chemotherapy 27: 511–514, 1985

    PubMed  CAS  Google Scholar 

  • Guerra JG, Casalino E, Palomino JC, Barboza E, del Castillo M, et al. Imipenem/cilastatin vs gentamicin/clindamycin for the treatment of moderate to severe infections in hospitalized patients. Reviews of Infectious Diseases 7(Suppl. 3): 463–469, 1985

    Google Scholar 

  • Gutmann L, Goldstein FW, Kitzis MD, Hautefort B, Darmon C, et al. Susceptibility of Nocardia asteroides to 46 antibiotics, including 22 β-lactams. Antimicrobial Agents and Chemotherapy 23: 248–251, 1983

    PubMed  CAS  Google Scholar 

  • Guze PA, Kalmanson GM, Ishida K, Freedman LR, Guze LB. Treatment of staphylococcal pyelonephritis in rats with N-formimidoyl thienamycin. Chemioterapia 3: 53–56, 1984a

    PubMed  CAS  Google Scholar 

  • Guze PA, Kalmanson GM, Ishida K, Freedman LR, Guze LB. Chemoprophylaxis of experimental rabbit endocarditis with N-formimidoyl thienamycin. Journal of Infectious Diseases 150: 159–160, 1984b

    PubMed  CAS  Google Scholar 

  • Haas H, Zubi R, Sacks TG. Susceptibility of Mycobacterium fallax to imipenem and twenty other antimicrobial agents. European Journal of Clinical Microbiology 3: 489–491, 1984

    PubMed  CAS  Google Scholar 

  • Hamajima K, Kobayashi H, Kamai K, Shibata M, Horikoshi J, et al. Plasma levels and urinary excretion of imipenem and cilastatin sodium in dogs and rabbits. Chemotherapy (Tokyo) 33(Suppl. 4): 315–322, 1985

    CAS  Google Scholar 

  • Hanslo D, King A, Shannon K, Warren C, Phillips I. N-Formimidoyl thienamycin (MK0787): in vitro antibacterial activity and susceptibility to beta-lactamases compared with that of cefotaxime, moxalactam and other beta-lactam antibiotics. Journal of Antimicrobial Chemotherapy 7: 607–617, 1981

    PubMed  CAS  Google Scholar 

  • Hara K-I, Shibata M, Kobayashi H, Hamajima K, Hayase K, et al. Physiological disposition of imipenem and cilastatin sodium in rats (I). Chemotherapy (Tokyo) 33(Suppl. 4): 290–304, 1985

    CAS  Google Scholar 

  • Hartman BJ, Williams TW, Roberts RB. Selected thienamycin resistance in Pseudomonas aeruginosa. Clinical Research 30: 368A, 1982

    Google Scholar 

  • Hashizume T, Ishino F, Nakagawa J-I, Tamaki S, Matsuhashi M. Studies on the mechanism of action of imipenem (N-formidoylthienamycin) in vitro. Journal of Antibiotics 37: 394–400, 1984a

    PubMed  CAS  Google Scholar 

  • Hashizume T, Park W, Matsuhashi M. The affinity of imipenem (N-formimidoylthienamycin) for the penicillin-binding proteins of Staphylococcus aureus — binding and release. Journal of Antibiotics 37: 1049–1053, 1984b

    PubMed  CAS  Google Scholar 

  • Hashizume T, Yamaguchi A, Hirata T, Sawai T. Kinetic studies on the inhibition of Proteus vulgaris β-lactamase by imipenem. Antimicrobial Agents and Chemotherapy 25: 149–151, 1984c

    PubMed  CAS  Google Scholar 

  • Halano H, Wakamatsu K. Studies of imipenem/cilastatin sodium m the field of ophthalmology. Chemotherapy (Tokyo) 33(Suppl. 4): 1118–1121, 1985

    Google Scholar 

  • Henry D, Skidmore AG, Ngui-Yen J, Smith A, Smith JA. In vitro activities of enoxacin, ticarcillin plus clavulanic acid, aztreonam, piperacillin and imipenem, and comparison with commonly used antimicrobial agents. Antimicrobial Agents and Chemotherapy 28: 259–264, 1985

    PubMed  CAS  Google Scholar 

  • Heseltine PNR, Appleman MD, Leedom JM. Epidemiology and susceptibility of resistant Bacteroides fragilis group organisms to new β-lactam antibiotics. Reviews of Infectious Diseases 6(Suppl. 1): 254–259, 1984

    CAS  Google Scholar 

  • Heseltine PNR, Yellin AE, Appleman MD, Gill MA, Chenella FC, Berne TV, et al. Imipenem therapy for perforated and gangrenous appendicitis. Surgery, Gynecology and Obstetrics 162: 43–48, 1986

    PubMed  CAS  Google Scholar 

  • Hirabayashi K, Okada E. Fundamental and clinical studies of imipenem and imipenem/cilastatin sodium in the field of obstetrics and gynecology. Japanese Journal of Antibiotics 34: 1413–1426, 1986

    Google Scholar 

  • Hoffman TA, Cleary TJ, Bercuson DH. Effects of inducible beta-lactamase and antimicrobial resistance upon the activity of newer beta-lactam antibiotics against Pseudomonas aeruginosa. Journal of Antibiotics 34: 1334–1340, 1981

    CAS  Google Scholar 

  • Hongo M, Shimizu R, Sakae K, Kohchi T, Tada K, et al. A study on the operation of imipenem/cilastatin sodium into the female genital tissues. Japanese Journal of Antibiotics 34: 1389–1400, 1986

    Google Scholar 

  • Howard AJ, Hince CJ. The activity of N-formimidoyl thienamycin (MK 0787) against Haemophilus influenzae and Streptococcus pneumoniae. Journal of Antimicrobial Chemotherapy 10: 383–390, 1982

    PubMed  CAS  Google Scholar 

  • Iannini PB, Kunkel MJ, Hilton E, Iannini GM. Imipenem/cilastatin: general experience in a community hospital. American Journal of Medicine 78(Suppl. 6A): 122–126, 1985

    PubMed  CAS  Google Scholar 

  • Indrelie JA, Wilson WR, Matsumoto JY, Geraci JE, Washington II JA. Synergy of imipenem or penicillin G and aminoglycosides against Enterococci isolated from patients with infective endocarditis. Antimicrobial Agents and Chemotherapy 26: 909–912, 1984

    PubMed  CAS  Google Scholar 

  • Ishino F, Matsuhashi M. Peptidoglycan synthetic enzyme activities of highly purified penicillin-binding protein 3 in Escherichia coli: a septum-forming reaction sequence. Biochemical and Biophysical Research Communications 101: 905–911, 1981

    PubMed  CAS  Google Scholar 

  • Ito K, Ito T, Matsunami K, Hayasaki M, Noda K. Studies of imipenem/cilastatin sodium in the field of obstetrics and gynecology. Chemotherapy (Tokyo) 33(Suppl. 4): 1069–1079, 1985a

    CAS  Google Scholar 

  • Ito Y, Takeda A, Kanematsu M, Bar Y, Nishiwa T, et al. Clinical studies of imipenem/cilastatin sodium in complicated urinary tract infections and drug concentrations in human kidney and prostate. Chemotherapy (Tokyo) 33(Suppl.4): 825–833, 1985b

    Google Scholar 

  • Iwai S, Takai K, Sato Y, Sato T, Tomioka K, et al. Fundamental and clinical studies on imipenem/cilastatin sodium in surgical field. Chemotherapy (Tokyo) 33(Suppl. 4): 950–962, 1985

    CAS  Google Scholar 

  • Iwase H, Seto H, Hogaki M, Arai K. Fundamental and clinical studies of imipenem/cilastatin sodium in the field of obstetrics and gynecology. Japanese Journal of Antibiotics 34: 1350–1358, 1986

    Google Scholar 

  • Jacobs MR, Kelly F, Speck WT. Susceptibility of Group B Streptococci to 16 β-lactam antibiotics, including new penicillin and cephalosporin derivatives. Antimicrobial Agents and Chemotherapy 22: 897–900, 1982

    PubMed  CAS  Google Scholar 

  • Jacobs RF, Kearns GL, Brown AL, Trang JM, Kluza RB. Renal clearance of imipenem in children. European Journal of Clinical Microbiology 3: 471–474, 1984a

    PubMed  CAS  Google Scholar 

  • Jacobs RF, Kearns GL, Trang JM, Brown AL, Manner B, et al. Single-dose pharmacokinetics of imipenem in children. Journal of Pediatrics 105: 996–1001, 1984b

    PubMed  CAS  Google Scholar 

  • Johnson DE, Calia FM, Snyder MJ, Warren JW, Schimpff SC. Imipenem therapy of Pseudomonas aeruginosa bacteraemia in neutropenic rats. Journal of Antimicrobial Chemotherapy 12(Suppl. D): 89–96, 1983

    PubMed  CAS  Google Scholar 

  • Jones KH, Alestig K, Ferber F, Huber JL, Kahan FM, et al. Multiple dose pharmacokinetics of N-formimidoyl-thienamycin (MK0787). Abstract no. 593. 21st Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, 4–6 Nov, 1981

  • Jones RN. Review of the in vitro spectrum of activity of imipenem. American Journal of Medicine 78(Suppl. 6A): 22–32, 1985

    PubMed  CAS  Google Scholar 

  • Kager L, Brismar B, Malmborg AS, Nord CE. Effect of imipenem prophylaxis on colon microflora in patients undergoing colorectal surgery. Abstract no. S-78-12. 14th International Congress of Chemotherapy, Kyoto, 23–28 Jun 1985

  • Kager L, Nord CE. Imipenem/cilastatin in the treatment of intra-abdominal infections: a review of worldwide experience. Reviews of Infectious Diseases 7(Suppl. 3): 518–521, 1985

    Google Scholar 

  • Kahan FM, Kropp H, Sundelof JG, Birnbaum J. Thienamycin: development of imipenem-cilastatin. Journal of Antimicrobial Chemotherapy 12(Suppl. D): 1–35, 1983

    PubMed  CAS  Google Scholar 

  • Kallick C, Rice T, Norsen J, Rajashekaraiah K, Marsh D, et al. In vitro activity of N-formimidoyl thienamycin against Pseudomonas and Staphylococci associated with endocarditis. Current Chemotherapy and Immunotherapy 1: 725–726, 1981

    Google Scholar 

  • Kamei K, Oleazalei A, Okada N, Hamajima K. Assay methods for cilastatin sodium in body fluids and tissues. Chemotherapy (Tokyo) 33(Suppl. 4): 282–289, 1985

    CAS  Google Scholar 

  • Kawada Y. Treatment of complicated urinary tract infections with imipenem/cilastatin. Abstract no. WS-10-4. 14th International Congress of Chemotherapy, Kyoto, 23–28 Jun, 1985

  • Kawada Y, Nishiura T, Kumamoto Y, Origasa S, Niijima T, et al. Comparative study of MK-0787/MK-0791 and cefoperazone in complicated urinary tract infections. Chemotherapy (Tokyo) 34: 536–560, 1986

    Google Scholar 

  • Kesado T, Asahi Y, Fuse A, Hashizume T, Ogashiwa M, et al. In vitro and in vivo antibacterial activity of imipenem/cilastatin sodium. Chemotherapy (Tokyo) 33(Supply. 4): 98–118, 1985a

    CAS  Google Scholar 

  • Kesado T, Asahi Y, Hashizume T. Microbiological assay method of imipenem in biological specimens. Chemotherapy (Tokyo) 33(Suppl. 4): 275–281, 1985b

    CAS  Google Scholar 

  • Kesado T, Hashizume T, Asahi Y. Antibacterial activities of a new stabilized thienamycin, N-formimidoyl thienamycin, in comparison with other antibiotics. Antimicrobial Agents and Chemotherapy 17: 912–917, 1980

    PubMed  CAS  Google Scholar 

  • Kesado T, Watanabe K, Asahi Y, Miyauchi M, Ueno K, et al. Effect of imipenem/cilastatin sodium (MK-0787/MK-0791) administered intravenously on human fecal microflora. Chemotherapy (Tokyo) 34: 504–510, 1986

    CAS  Google Scholar 

  • Kesado T, Watanabe K, Asahi Y, Isono M, Ueno K. Susceptibilities of anaerobic bacteria to N-formimidoyl thienamycin (MK0787) and to other antibiotics. Antimicrobial Agents and Chemotherapy 21: 1016–1022, 1982

    PubMed  CAS  Google Scholar 

  • Kim KS. Comparison of cefotaxime, imipenem-cilastatin, ampicillin-gentamicin, and ampicillin-chloramphenicol in the treatment of experimental Escherichia coli bacteremia and meningitis. Antimicrobial Agent and Chemotherapy 28: 433–436, 1985a

    CAS  Google Scholar 

  • Kim KS. Efficacy of imipenem in experimental group B streptococcal bacteremia and meningitis. Chemotherapy 31: 304–309, 1985b

    PubMed  CAS  Google Scholar 

  • Kim KS. In vitro and in vivo studies of imipenen-cilastatin alone and in combination with gentamicin against Listeria monocytogenes. Antimicrobial Agents and Chemotherapy 29: 289–293, 1986

    PubMed  CAS  Google Scholar 

  • Kim S, Campbell BJ. Localization of renal dipeptidase within the kidney microvillus cytoskeleton and its activity against the antibiotic, N-formimidoyl-thienamycin. Federation Proceedings 41: 1422, 1982

    Google Scholar 

  • Kirkpatrick B, Ashby J, Wise R. β-Lactams and imipenem. Lancet 1: 802, 1986

    PubMed  CAS  Google Scholar 

  • Kohara T, Matsui Y, Noda M, Ooiwa K, Jida S. Experience with imipenem/cilastatin sodium in the field of obstetrics and gynecology. Japanese Journal of Antibiotics 34: 1372–1382, 1986

    Google Scholar 

  • Krilov LR, Blumer JL, Stern C, Hartstein AI, Iglewski BN, et al. Imipenem/cilastatin in acute pulmonary exacerbations of cystic fibrosis. Reviews of Infectious Diseases 7(Suppl. 3): 482–488, 1985

    Google Scholar 

  • Kropp H, Gerckers L, Sundelof JG, Kahan FM. Antibacterial activity of imipenem: the first thienamycin antibiotic. Review of Infectious Diseases 7(Suppl. 3): S389–S410, 1985

    CAS  Google Scholar 

  • Kropp H, Sundelof JG, Hajdu R, Kahar FM. Metabolism of thienamycin and related carbapenem antibiotics by the renal dipeptidase, dehydropeptidase — I. Antimicrobial Agents and Chemotherapy 22: 62–70, 1982

    PubMed  CAS  Google Scholar 

  • Kropp H, Sundelof JG, Kahan JS, Kahan FM, Birnbaum J. MK 0787 (N-formimidoyl thienamycin): evaluation of in vitro and in vivo activities. Antimicrobial Agents and Chemotherapy 17: 993–1000, 1980

    PubMed  CAS  Google Scholar 

  • Kümmel A, Schlosser V, Petersen E, Daschner FD. Pharmacokinetics of imipenem-cilastatin in serum and tissue. European Journal of Clinical Microbiology 4: 609–610, 1985

    PubMed  Google Scholar 

  • Kumon H, Ohmori Kodama H, Nishimura A, Konishi Y. The effects of imipenem and cilastatin sodium on the urinary peptides excretion and pharmacokinetics of the two agents. Chemotherapy (Tokyo) 33(Suppl. 4): 264–274, 1985

    CAS  Google Scholar 

  • Laferriere C, Marks MI, Welch DF. Effect of inoculum size on Haemophilus influenzae type b susceptibility to new and conventional antibiotics. Antimicrobial Agents and Chemotherapy 24: 287–289, 1983

    PubMed  CAS  Google Scholar 

  • Landesman SH, Cummings M, Gruarin A, Bernheimer H. Susceptibility of multiply antibiotic-resistant pneumococci to the new beta-lactam drugs and rosaramicin. Antimicrobial Agents and Chemotherapy 19: 675–677, 1981

    PubMed  CAS  Google Scholar 

  • Larivière L, Gaudreau C, Turgeon F. Antimicrobial susceptibilities of 163 strains of Campylobacter jejuni. Annals of the Royal College of Physicians and Surgeons of Canada 17: 333, 1984

    Google Scholar 

  • Lerner SA, Dudek EJ, Boisvert WE, Berndt KD. Effect of highly potent antipseudomonal β-lactam agents alone and in combination with aminoglycosides against Pseudomonas aeruginosa. Reviews of Infectious Diseases 6(Suppl. 3): S678–S688, 1984

    PubMed  Google Scholar 

  • Liñares J, Pérez JL, Garau J, Murgui L, Martin R. Comparative susceptibilities of penicillin-resistant pneumococci to co-trimoxazole, vancomycin, rifampicin and fourteen β-lactam antibiotics. Journal of Antimicrobial Chemotherapy 13: 353–359, 1984

    PubMed  Google Scholar 

  • Liñares J, Pérez JL, Martin R. Journal of Antimicrobial Chemotherapy 12: 293, 1983

    PubMed  Google Scholar 

  • Livermore DM, Williams RJ, Williams JD. In vitro activity of MK 0787 (N-formimidoyl thienamycin) against Pseudomonas aeruginosa and other Gram-negative organisms and its stability to their β-lactamases. Journal of Antimicrobial Chemotherapy 8: 355–362, 1981

    PubMed  CAS  Google Scholar 

  • Livingston WK, Elliott AM, Cobbs CG. In vitro activity of N-formimidoyl thienamycin (MK 0787) against resistant strains of Pseudomonas aeruginosa, Staphylococcus epidermidis, Serratia marcescens and Enterococcus spp. Antimicrobial Agents and Chemotherapy 19: 114–116, 1981

    PubMed  CAS  Google Scholar 

  • Lockley MR, Wise R. Pharmacology of imipenem. Journal of antimicrobial Chemotherapy 16: 531–534, 1985

    PubMed  CAS  Google Scholar 

  • Lyon JA. Imipenem/cilastatin: the first carbapenem antibiotic. Drug Intelligence and Clinical Pharmacy 19: 894–899, 1985

    CAS  Google Scholar 

  • MacGregor RR, Gentry LO. Imipenem/cilastatin in the treatment of osteomyelitis. American Journal of Medicine 78(Suppl. 6A): 100–103, 1985

    PubMed  CAS  Google Scholar 

  • MacGregor RR, Gibson GA, Bland JA. Imipenem pharmacokinetics and body fluid concentrations in patients receiving high-dose treatment for serious infections. Antimicrobial Agents and Chemotherapy 29: 188–192, 1986

    PubMed  CAS  Google Scholar 

  • Machka K. Bactericidal activity of imipenem in serum. European Journal of Clinical Microbiology 3: 495–497, 1984

    PubMed  CAS  Google Scholar 

  • Maeda Y, Sengoku K, Mure K, Yamashita K, Shimizu T. Penetration of imipenem/cilastatin sodium into the tissues of the female reproductive organs. Japanese Journal of Antibiotics 34: 1337–1341, 1986

    Google Scholar 

  • Marier RL. Role of imipenem/cilastatin in the treatment of soft tissue infections. American Journal of Medicine 78(Suppl. 6A): 140–144, 1985

    PubMed  CAS  Google Scholar 

  • Marier RL, McCloskey RV, Dickenson G, Sanders CV, Aldridge KE, et al. Comparative clinical trial of imipenem-cilastatin (N-formimidoyl-thienamycin-dehydropeptidase inhibitor) and cefazolin. Journal of Antimicrobial Chemotherapy 12(Suppl. D): 133–139, 1983

    PubMed  Google Scholar 

  • Markowitz N, Pohlod DJ, Saravolatz LD, Quinn EL. In vitro susceptibility patterns of methicillin-resistant and -susceptible Staphylooccus aureus strains in a population of parenteral drug abusers for 1972 to 1981. Antimicrobial Agents and Chemotherapy 23: 450–457, 1983

    PubMed  CAS  Google Scholar 

  • Martin DA, Sanders CV, Marier RL. N-Formimidoyl thienamycin (MK0787): In vitro activity against anaerobic bacteria. Antimicrobial Agent and Chemotherapy 21: 168–169, 1982

    CAS  Google Scholar 

  • Martino P, Venditti M, Valente B, Brandimarte C, Serra P. N-formimidoyl-thienamycin and norfloxacin against multiple-resistant Pseudomonas aeruginosa strains: combined in vitro activity and comparison with 14 other antibiotics. Drugs Under Experimental and Clinical Research 11: 247–251, 1985

    PubMed  CAS  Google Scholar 

  • Matsuda S, Kashiwagwa T, Nojima M, Miyazaki R. Fundamental and clinical studies of imipenem/cilastatin sodium in the field of obstetrics and gynecology. Chemotherapy (Tokyo) 33(Suppl. 4): 1064–1068, 1985

    Google Scholar 

  • Matsuhashi M, Ishino F, Nakagawa J-I, Mitsui K, Nakajima-Iijima S, et al. Enzymatic activities of penicillin-binding proteins of Escherichia coli and their sensitivities to β-lactam antibiotics. In Slaton & Shockman (Eds) Beta-lactam antibiotics, pp. 169–184, Academic Press, New York and London, 1981

    Google Scholar 

  • Matzkowitz AJ, Baltch AL, Smith RP, Sutphen NT, Hammer MC, et al. In vitro comparison of N-formimidoyl thienamycin (MK0787) and azlocillin with three aminoglycosides and ticarcillin against Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 21: 685–687, 1982

    PubMed  CAS  Google Scholar 

  • Mayer KM, Roland F. Susceptibilities of nosocomial aminoglycoside-resistant Acinetobacter to 12 newer antibiotics alone and in combination. Abstract no. 1055. 24th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington DC, October, 1984

  • Mayer M, Tophoff C, Opferkuch W. Bile levels of imipenem following different dose regimens. International Journal of Clinical Pharmacology Research 5: 325–329, 1985

    PubMed  CAS  Google Scholar 

  • McDonald PJ, Hakendorf P, Pruul H. Recovery period of bacteria after brief exposure of N-formimidoyl thienamycin and other antibiotics. Proceedings of the 12th International Congress of Chemotherapy, Florence, Jul, 1981

  • McGeary GS, Kim KS, Ward JI. Susceptibility of Group B Streptococcus to beta-lactam antibiotics. Drugs Under Experimental and Clinical Research 10: 693–696, 1983

    Google Scholar 

  • McNamara BT, Meyer RD, Pasiecznik KA. In vitro susceptibility of cephalothin-resistant Enterobacteriaceae and Pseudomonas aeruginosa to amikacin and selected new β-lactam agents. Antimicrobial Agents and Chemotherapy 21: 753–757, 1982

    PubMed  CAS  Google Scholar 

  • Meagran D, Carlson C, Chow A. In vitro activity of imipenem against anaerobic bacteria. European Journal of Clinical Microbiology 3: 488–489, 1984

    Google Scholar 

  • Meyer RD, Pasiecznik K. In vitro activity of newer β-lactam agents in combination with amikacin against Pseudomonas aeruginosa, Klebsiella pneumoniae and Serratia marcescens. Diagnostic Microbiology and Infectious Disease 1: 287–293, 1983

    PubMed  CAS  Google Scholar 

  • Michael PR, Alford RH, McGee ZA. Superior activity of N-formimidoyl thienamycin against gentamicin-resistant Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 20: 702–704, 1981

    PubMed  CAS  Google Scholar 

  • Miller MA, Finan M, Yousuf M. In vitro antagonism by N-formimidoyl thienamycin and cefoxitin of second and third generation cephalosporins in Aeromonas hydrophila and Serratia marcescens. Journal of Antimicrobial Chemotherapy 11: 311–318, 1983

    PubMed  CAS  Google Scholar 

  • Miller MA, Le Frock JL, Vercler MJ. Comparative activity of N-formimidoyl thienamycin with third generation cephalosporins and ureido penicillins against multiple resistant Serratia marcescens. Microbiology and Immunology 25: 1119–1127, 1981

    PubMed  CAS  Google Scholar 

  • Mitsuhashi S. In-vitro and in-vivo antibacterial activity of imipenem against clinical isolates of bacteria. Journal of Antimicrobial Chemotherapy 12(Suppl. D): 53–64, 1983

    PubMed  CAS  Google Scholar 

  • Modai J, Vittecoq D, Decazes JM, Meulemans A. Penetration of imipenem and cilastatin into cerebrospinal fluid of patients with bacterial meningitis. Journal of Antimicrobial Chemotherapy 16: 751–755, 1985

    PubMed  CAS  Google Scholar 

  • Muytjens HL, Heessen FWA. In vitro activities of thirteen β-lactam antibiotics against Chlamydia trachomatis. Antimicrobial Agents and Chemotherapy 22: 520–521, 1982

    PubMed  CAS  Google Scholar 

  • Muytjens HL, van der Ros-van de Repe J. Comparative activities of 13 β-lactam antibiotics. Antimicrobial Agents and Chemotherapy 21: 925–934, 1982

    PubMed  CAS  Google Scholar 

  • Myers CM, Blumer JL. Determination of imipenem and cilastatin in serum by high-pressure liquid chromatography. Antimicrobial Agents and Chemotherapy 26: 78–81, 1984

    PubMed  CAS  Google Scholar 

  • Naito H, Hara T, Akagi T, Masaoka T, Kudo Y, et al. Fundamental and clinical studies of imipenem/cilastatin sodium in the field of obstetrics and gynecology. Japanese Journal of Antibiotics 34: 1401–1413, 1986

    Google Scholar 

  • Nakagawa K, Koyama, Hayase K, Kesado T. Imipenem, cilastatin sodium, imipenem/cilastatin sodium clinical phase I study. Chemotherapy (Tokyo) 33(Suppl. 4): 357–378, 1985

    CAS  Google Scholar 

  • Nakanishi A, Hino K, Shimamoto I, Ichijo M. Fundamental and clinical studies of imipenem/cilastatin sodium in the field of obstetrics and gynecology. Japanese Journal of Antibiotics 34: 1383–1388, 1986

    Google Scholar 

  • Nalin DR, Hart CB, Aziz MA. International trial of imipenem/cilastatin (I/C) for pediatric infections. Abstract no. 1401. 9th International Congress of Infectious and Parasitic Diseases, Munich, Jul 20–26, 1986

  • National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically — M7-A, Vol. 5, No. 22, NCCLS, Villanova PA, Dec, 1985

    Google Scholar 

  • Neu HC. Carbapenems: special properties contributing to their activity. American Journal of Medicine 78(Suppl. 6A): 33–40, 1985a

    PubMed  CAS  Google Scholar 

  • Neu HC. Summary of imipenem/cilastatin symposium. American Journal of Medicine 78(Suppl. 6A): 165–167, 1985b

    Google Scholar 

  • Neu HC, Labthavikul P. Comparative in vitro activity of N-formimidoyl thienamycin against Gram-positive and Gram-negative aerobic and anaerobic species and its β-lactamase stability. Antimicrobial Agents and Chemotherapy 21: 180–187, 1982

    PubMed  CAS  Google Scholar 

  • Nielsen DM, Katz JR, Ah Loy RD, Hansen RS, Meyer RD. Imipenem/cilastatin therapy for serious bacterial infections. Reviews of Infectious Diseases 7(Suppl. 3): 506–512, 1985

    Google Scholar 

  • Nishino T, Nakamura K, Tanaka M, Gotoh T, Ohtsuki M, et al. In vitro activity of imipenem, a new carbapenem. Chemotherapy (Tokyo) 33(Suppl. 33): 74–90, 1985

    CAS  Google Scholar 

  • Nord CE, Kager L, Philipson A, Stiernstedt G. Impact of imipenem/cilastatin therapy on faecal flora. European Journal of Clinical Microbiology 3: 475–477, 1984

    PubMed  CAS  Google Scholar 

  • Nord CE, Kager L, Philipson A, Stiernstedt G. Effect of imipenem/cilastatin on the colonic microflora. Reviews of Infectious Diseases 7(Suppl. 3): 432–434, 1985

    Google Scholar 

  • Nord CE, Olsson-Liljequist B. Antimicrobial susceptibility of anaerobic bacteria in Sweden in 1983. Scandinavian Journal of Infectious Diseases 43: 44–49, 1984

    PubMed  CAS  Google Scholar 

  • Norrby SR, Alestig K, Björnegård B, Burman LÅ, Ferber F, et al. Urinary recovery of N-formimidoyl thienamycin (MKO787) as affected by coadministration of N-formimidoyl thienamycin dehydropeptidase inhibitors. Antimicrobial Agents and Chemotherapy 23: 300–307, 1983a

    PubMed  CAS  Google Scholar 

  • Norrby SR, Alestig K, Ferber F, Huber JL, Jones KH et al. Pharmacokinetics and tolerance of N-formimidoyl thienamycin (MK0787) in humans. Antimicrobial Agents and Chemotherapy 23: 293–299, 1983b

    PubMed  CAS  Google Scholar 

  • Norrby SR, Björnegård B, Ferber F, Jones KH. Pharmacokinetics of imipenem in healthy volunteers. Journal of Antimicrobial Chemotherapy 12(Suppl. D): 109–124, 1983c

    PubMed  CAS  Google Scholar 

  • Norrby SR, Alestig K, Ferber F, Kahar FH, Kahan JS, et al. Enhanced urinary recovery of N-formimidoyl thienamycin (MK 0787) on administering an inhibitor of the renal dipeptidase responsible for antibiotic metabolism. In Periti & Grassi (Eds) Current Chemotherapy and Immunotherapy, Vol 1. pp. 743–745, American Society for Microbiology, Washington DC, 1981

    Google Scholar 

  • Norrby SR, Rogers JD, Ferber F, Jones KH, Zacchei AG, et al. Disposition of radiolabeled imipenem and cilastatin in normal human volunteers. Antimicrobial Agents and Chemotherapy 26: 707–714, 1984

    PubMed  CAS  Google Scholar 

  • O’Donnell ED, Freimer EH, Gilardi GL, Raeder R. Comparative in vitro activities of N-formimidoyl thienamycin and moxalactam against nonfermentative aerobic Gram-negative rods. Antimicrobial Agents and Chemotherapy 21: 673–675, 1982

    PubMed  Google Scholar 

  • Ohm-Smith MJ, Hadley WK, Sweet RL. In vitro activity of new β-lactam antibiotics and other antimicrobial drugs against anaerobic isolates from obstetric and gynecological infections. Antimicrobial Agents and Chemotherapy 22: 711–714, 1982

    PubMed  CAS  Google Scholar 

  • Okada K, Nakajima N, Miyabita H, Kawashima T, Tanigawa K, et al. Fundamental and clinical studies of imipenem/cilastatin sodium in the field of urology. Chemotherapy (Tokyo) 33(Suppl. 4): 778–792, 1985

    CAS  Google Scholar 

  • Ooishi M, Tsuru K, Sakagami F, Oomomo A, Nagai S. Fundamental and clinical studies of imipenem/cilastatin sodium in the field of ophthalmology. Chemotherapy (Tokyo) 33(Suppl. 4): 1122–1128, 1985

    CAS  Google Scholar 

  • Oomomo Y, Maruhashi T, Hanaoka J, Minagawa Y, Yuzawa H, et al. Clinical studies on the effect of imipenem/cilastatin sodium on infections in obstetrics and gynecology. Japanese Journal of Antibiotics 34: 1342–1349, 1986

    Google Scholar 

  • Owens WE, Finegold SM. Comparative in vitro susceptibilities of anaerobic bacteria to cefmenoxime, cefotetan, and N-formimidoyl thienamycin. Antimicrobial Agents and Chemotherapy 23: 626–629, 1983

    PubMed  CAS  Google Scholar 

  • Park S-Y, Parker RH. Review of imipenem. Infection Control 7: 333–337, 1986

    PubMed  CAS  Google Scholar 

  • Pedersen SS, Pressler T, Høiby N, Bentzon MW, Koch C. Imipenem/cilastatin treatment of multiresistant Pseudomonas aeruginosa lung infection in cystic fibrosis. Journal of Antimicrobial Chemotherapy 16: 629–635, 1985

    PubMed  CAS  Google Scholar 

  • Pennington JE, Johnson CE. Comparative activities of N-formimidoyl thienamycin, ticarcillin, and tobramycin against experimental Pseudomonas aeruginosa pneumonia. Antimicrobial Agents and Chemotherapy 22: 406–408, 1982

    PubMed  CAS  Google Scholar 

  • Perea EJ, Martin E, Nogales MC, Pascual A, Borobia MV. N-formimidoyl thienamycin activity against aerobes and anaerobes: effect of inoculum size, pH variation, and different culture medium. Proceedings of the 12th International Congress of Chemotherapy, Florence, Jul, 1981

  • Phillips I, King A, Shannon K, Warren C, Hanslo D. In vitro activity of ceftazidime compared with that of other β-lactam antibiotics and gentamicin against Pseudomonads and Enterobacteria. Proceedings of the 12th International Congress of Chemotherapy, Florence, Jul, 1981

  • Pierson CL, Schaberg DR, Fekety Jr R, McClatchey KD. In vitro activity of Sch 29482, MK0787, ceftriaxone and seven other antimicrobials against 840 separate clinical isolates. Journal of Antimicrobial Chemotherapy 9(Suppl. C): 79–89, 1982

    PubMed  CAS  Google Scholar 

  • Preblud SR, Gill CJ, Campos JM. Bactericidal activities of chloramphenicol and eleven other antibiotics against Salmonella spp. Antimicrobial Agents and Chemotherapy 25: 327–330, 1984

    PubMed  CAS  Google Scholar 

  • Puppel H, Baier R. Interaction between piperacillin and fosfomycin, ceftazidime and imipenem: killing curve method. Abstract no. S-37-8. 14th International Congress of Chemotherapy, Kyoto (Japan), Jun, 1985

  • Pusztai-Markos Zs, Pranada F. In vitro activity of N-formimidoyl-thienamycin in comparison to that of moxalactam and cefotaxime against gentamicin-resistant Gram-negative bacteria. European Journal of Clinical Microbiology 1: 49–51, 1982

    PubMed  CAS  Google Scholar 

  • Quinn JP, Dudek EJ, Lerner SA. Emergence of resistance to imipenem during therapy for Pseudomonas aeruginosa infections. Journal of Infectious Diseases 154: 289–294, 1986

    PubMed  CAS  Google Scholar 

  • Ray B, Panja K, Bal M. In vitro activity of N-formimidoyl thienamycin (MK0787) compared with other β-lactamase stable cephalosporins against β-lactamase producing Staphylococcus aureus. Indian Journal of Medical Research 79: 482–486, 1984

    PubMed  CAS  Google Scholar 

  • Reed MD, Stern RC, O’Brien CA, Myers CH, Blumer JL. Efficacy and pharmacokinetics (PK) of imipenem/cilastatin (IMP/DHI) in cystic fibrosis. Abstract no. C45. Clinical Pharmacology and Therapeutics 35: 268, 1984

    Google Scholar 

  • Reed MD, Stern RC, O’Brien CA, Yamashita TS, Myers CM, et al. Pharmacokinetics of imipenem and cilastatin in patients with cystic fibrosis. Antimicrobial Agents and Chemotherapy 27: 583–588, 1985

    PubMed  CAS  Google Scholar 

  • Reimer LG, Stratton CW, Relier LB. Minimum inhibitory and bactericidal concentrations of 44 antimicrobial agents against three standard control strains in both with and without human serum. Antimicrobial Agents and Chemotherapy 19: 1050–1055, 1981

    PubMed  CAS  Google Scholar 

  • Ribner BS, Raeder R, Hollstein M, Freimer EH. Randomized study comparing clinical efficacy and safety of thienamycin formamidine (MK0787)/renal dipeptidase inhibitor (MK0791) and cefazolin. Journal of Antimicrobial Chemotherapy 12: 387–391, 1983

    PubMed  CAS  Google Scholar 

  • Richmond MH. The semi-synthetic thienamycin derivative MK0787 and its properties with respect to a range of β-lactamases from clinically relevant bacterial species. Journal of Antimicrobial Chemotherapy 7: 279–285, 1981

    PubMed  CAS  Google Scholar 

  • Richmond MH, Sykes RB. The beta-lactamases of Gram-negative bacteria and their possible physiological role. Advances in Microbial Physiology 9: 31–85, 1973

    PubMed  CAS  Google Scholar 

  • Ritzerfeld VW. N-formidoyl-thienamycin im Tierversuch. Arzneimittel-Forschung 33: 470–472, 1983

    PubMed  CAS  Google Scholar 

  • Rodriguez K, Dickinson GM, Greenman RL. Successful treatment of Gram-negative bacillary meningitis with imipenem/cilastatin. Southern Medical Journal 78: 731–732, 1985

    PubMed  CAS  Google Scholar 

  • Rogers JD, Meisinger MAP, Ferber F, Calandra GB, Demetriades JL, et al. Pharmacokinetics of imipenem and cilastatin in volunteers. Reviews of Infectious Diseases 7(Suppl. 3): S435–S446, 1985

    PubMed  CAS  Google Scholar 

  • Rolfe RD, Finegold SM. Comparative in vitro activity of new beta-lactam antibiotics against anaerobic bacteria. Antimicrobial Agents and Chemotherapy 20: 600–609, 1981

    PubMed  CAS  Google Scholar 

  • Ruckdeschel G, Ehret W, Ahl A. Susceptibility of Legionella spp. to imipenem and 27 other beta-lactam antibiotics. European Journal of Clinical Microbiology 3: 463–467, 1984

    PubMed  CAS  Google Scholar 

  • Sack K, Herhahn J, Marre R, Schulz E. Renal tolerance of imipenem/cilastatin and other beta-lactam antibiotics in rats. Infection 13(Suppl. 1): S156–S160, 1985

    PubMed  Google Scholar 

  • Saino Y, Kobayashi F, Inoue M, Mitsuhashi S. Purification and properties of inducible penicillin β-lactamase isolated from Pseudomonas multophilia. Antimicrobial Agents and Chemotherapy 22: 564–570, 1982

    PubMed  CAS  Google Scholar 

  • Saito A, Kato Y, Ishikawa K, Odagaki E, Shirohara M, et al. Studies on imipenem/cilastatin sodium. Chemotherapy (Tokyo) 33(Suppl. 4): 379–392, 1985a

    CAS  Google Scholar 

  • Saito A, Shimada J, Shiba K, Yamaji T, Hojo T, et al. Clinical studies on imipenem/cilastatin sodium. Chemotherapy (Tokyo) 33(Suppl. 4): 484–501, 1985b

    CAS  Google Scholar 

  • Sakai K, Fujimoto M, Ueda T, Sasaki T, Maeda S, et al. A clinical study on imipenem/cilastatin sodium (MK-0787/MK-0791) in the field of surgery. Chemotherapy (Tokyo) 33(Suppl. 4): 1007–1015, 1985

    Google Scholar 

  • Sakata I, Maruyama J, Haeno Y, Koh K, Katoura Y, et al. Fundamental and clinical studies of imipenem/cilastatin sodium in the surgical field. Chemotheray (Tokyo) 33(Suppl. 4): 1016–1020, 1985

    CAS  Google Scholar 

  • Sakata Y, McCracken Jr GH, Thomas ML, Olsen KD. Pharmacokinetics and therapeutic efficacy of imipenem, ceftazidime, and ceftriaxone in experimental meningitis due to an ampicillin- and chloramphenicol-resistant strain of haemophilus influenzae type b. Antimicrobial Agents and Chemotherapy 25: 29–32, 1984

    PubMed  CAS  Google Scholar 

  • Sanders CC. Inducible β-lactamases and non-hydrolytic resistance mechanisms. Journal of Antimicrobial Chemotherapy 13: 1–3, 1984

    PubMed  CAS  Google Scholar 

  • Sanders CC, Sanders Jr WE. Sch 29482: comparative activity against Enterobacteriaceae multiply-resistant to β-lactam antibiotics and mycobacteria. Journal of Antimicrobial Chemotherapy 9(Suppl. C): 59–69, 1982

    PubMed  CAS  Google Scholar 

  • Sanders CC, Sanders Jr WE. Emergence of resistance during therapy with the newer β-lactam antibiotics: role of inducible β-lactamases and implications for the future. Reviews of Infectious Diseases 5: 639–648, 1983

    PubMed  CAS  Google Scholar 

  • Sanders CC, Sanders Jr WE. Interaction of β-lactams with cephalosporinases of Gram-negative bacteria. Abstract no. 1235, ICAAC, Washington DC, 1984

  • Sato K, Matsuura Y, Inoue M, Mitsuhashi S. Properties of a new penicillinase type produced by Bacteroides fragilis. Antimicrobial Agents and Chemotherapy 22: 579–584, 1982

    PubMed  CAS  Google Scholar 

  • Sato K, Matsuura Y, Miyata K, Inoue M, Mitsuhashi S. Characterization of cephalosporinases from Bacteroides fragilis, Bacteroides thetaiotaomicron and Bacteroides vulgatus. Journal of Antibiotics 36: 76–85, 1983

    PubMed  CAS  Google Scholar 

  • Sawai T, Tsukamoto K. Cefoxitin, N-formimidoyl thienamycin, clavulanic acid, and penicillin acid sulfone as suicide inhibitors for different types of β-lactamases produced by Gram-negative bacteria. Journal of Antibiotics 35: 1594–1602, 1982

    PubMed  CAS  Google Scholar 

  • Scandinavian Study Group. Imipenem/cilastatin versus gentamicin for treatment of serious bacterial infections. Lancet 1: 868–871, 1984

    Google Scholar 

  • Schassan HH, Hörning R, Malottke R, Potel J. Activity of thienamycin (MK0787) in comparison with cefotaxime, moxalactam, ceftazidime, and other beta-lactams against clinically important Gram-negatiave nonfermenters and Enterobacteriaceae. Proceedings of the 12th International Congress of Chemotherapy, Florence, Jul, 1981

  • Scheid WM, Keeley JM. Imipenem therapy of experimental Staphylococcus aureus and Streptococcus faecalis endocarditis. Journal of Antimicrobial Chemotherapy 12(Suppl. D): 65–78, 1983

    Google Scholar 

  • Scribner RK, Wedro BC, Weber AH, Marks MI. Activities of eight new β-lactam antibiotics and seven antibiotic combinations against Neisseria meningitidis. Antimicrobial Agents and Chemotherapy 21: 678–680, 1982

    PubMed  CAS  Google Scholar 

  • Semenitz E, Gstraunthaler G, Pfaller W. Mode of action of MK 0787 (N-formidoyl thienamycin): microcalorimetric and morphological study. Proceedings of the 12th International Congress of Chemotherapy, Florence, Jul, 1981

  • Shah PM. Activity of imipenem in an in vitro model simulating pharmacokinetic parameters in human blood. Journal of Antimicrobial Chemotherapy 15(Suppl. A): 153–157, 1985a

    PubMed  CAS  Google Scholar 

  • Shah PM. Clinical experience with imipenem/cilastatin: analysis of a multicenter study. Reviews of Infectious Diseases 7(Suppl. 3): 471–475, 1985b

    Google Scholar 

  • Shanker S, Toohey M, Munro R. In vitro activity of seventeen antimicrobial agents against Gardnerella vaginalis. European Journal of Clinical Microbiology 1: 298–300, 1982

    PubMed  CAS  Google Scholar 

  • Shannon K, King A, Phillips I. β-Lactamases with high activity against imipenem and Sch 34343 from Aeromonas hydrophila. Journal of Antimicrobial Chemotherapy 17: 45–50, 1986

    PubMed  CAS  Google Scholar 

  • Sheehan GJ, Ronald AR. Imipenem in urinary tract infections. Current Therapeutic Research 37: 1141–1151, 1985

    Google Scholar 

  • Shlaes DM, Currie CA, Rotter G, Eanes M, Floyd R. Epidemiology of gentamicin-resistant, Gram-negative bacillary colonization in a spinal cord injury unit. Journal of Clinical Microbiology 18: 227–235, 1983

    PubMed  CAS  Google Scholar 

  • Shungu DL, Weinberg E, Cerami AT. Evaluation of three broth disk methods for testing the susceptibility of anaerobic bacteria to imipenem. Journal of Clinical Microbiology 21: 875–879, 1985

    PubMed  CAS  Google Scholar 

  • Solomkin JS, Fant WK, Rivera JO, Alexander JW. Randomized trial of imipenem/cilastatin versus gentamicin and clindamycin in mixed flora infections. American Journal of Medicine 78(Suppl. 6A): 85–91, 1985

    PubMed  CAS  Google Scholar 

  • Soriano F, Vega J. The susceptibility of Yersinia to eleven antimicrobials. Journal of Antimicrobial Chemotherapy 10: 543–547, 1982

    PubMed  CAS  Google Scholar 

  • Spelhaug DR, Gilchrist MJR, Washington II JA. Bactericidal activity of antibiotics against Campylobacter fetus subspecies intestinalis. Journal of Infectious Diseases 143: 500, 1981

    PubMed  CAS  Google Scholar 

  • Spratt BG, Jobanputra V, Zimmerman W. Binding of thienamycin and clavulanic acid to the penicillin-binding proteins of Escherichia coli K-12. Antimicrobial Agents and Chemotherapy 12: 406–409, 1977

    PubMed  CAS  Google Scholar 

  • Stamboulian D, Argüello EA, Jasovich A, Villar O, et al. Comparative clinical evaluation of imipenem/cilastatin vs cefotaxime in treatment of severe bacterial infections. Reviews of Infectious Diseases 7(Suppl. 3): 458–462, 1985

    Google Scholar 

  • Standiford HC, Drusaro GL, Bustamante CI, Rivera G, Forrest A, et al. Imipenem coadministered with cilastatin compared with moxalactam: integration of serum pharmacokinetics and microbiological activity following single-dose administration to normal volunteers. Antimicrobial Agents and Chemotherapy 29: 412–417, 1986

    PubMed  CAS  Google Scholar 

  • Staneck JL. Imipenem susceptibility testing with a commercially prepared dry-format microdilution tray. Journal of Clinical Microbiology 23: 1134–1135, 1986

    PubMed  CAS  Google Scholar 

  • Stone HH. Basic principles in the use of prophylactic antibiotics. Journal of Antimicrobial Chemotherapy 14(Suppl. B): 33–37, 1984

    PubMed  Google Scholar 

  • Strandberg DA, Jorgensen JH, Drutz DJ. Activities of aztreonam and new cephalosporins against infrequently isolated Gram-negative bacilli. Antimicrobial Agents and Chemotherapy 24: 282–286, 1983

    PubMed  CAS  Google Scholar 

  • Strandberg DA, Jorgensen JH, Drutz DJ. Acitvities of newer β-lactam antibiotics against ampicillin, chloramphenicol, or multiply-resistant Haemophilus influenzae. Diagnostic Microbiology and Infectious Disease 2: 333–337, 1984

    PubMed  CAS  Google Scholar 

  • Strausbaugh LJ, Laun PR. Beta-lactam — aminoglycoside antibiotic synergy against aerobic Gram-negative bacilli. Abstract no. A74. Annual Meeting of the American Society for Microbiology, St Louis, March, 1984

  • Stutman HR, Parker KM, Marks MI. Antimicrobials and serum bilirubin — albumin binding in neonates. Abstract no. 861. 23rd Interscience Conference on Antimicrobial Agents and Chemotherapy, Las Vegas, USA, 24–26 Oct, 1983

  • Sutton GLJ, Gartell PC, Karran SJ. An open controlled comparison of imipenem (MK 787/MK 791) vs metronidazole plus cefuroxime in the prevention of infectious morbidity complicating colorectal surgery. Abstract no. P-15-108. 14th International Congress of Chemotherapy, Kyoto, 23–28 Jun, 1985

  • Suzuki K, Baba S, Kiroshita H, Mori Y, Shimada J, et al. Laboratory and clinical studies of imipenem/cilastatin sodium in the field of otorhinolaryngology. Chemotherapy (Tokyo) 33(Suppl. 4): 1109–1117, 1985a

    CAS  Google Scholar 

  • Suzuki K, Tamai H, Naide Y, Fujita T, Ogawa T, et al. Diffusion into human prostatic fluids and clinical evaluation of imipenem/cilastatin sodium in urinary tract infections. Chemotherapy (Tokyo) 33(Suppl. 4): 793–810, 1985b

    Google Scholar 

  • Suzuyama Y, Nagasawa M, Koya H, Mori K, Shigero Y, et al. Laboratory and clinical studies on imipenem/cilastatin sodium. Chemotherapy (Tokyo) 33(Suppl. 4): 694–711, 1985

    CAS  Google Scholar 

  • Swanson DJ, DeAngelis C, Smith IL, Schentag JJ. Degradation kinetics of imipenem in normal saline and in human serum. Antimicrobial Agents and Chemotherapy 29: 936–937, 1986

    PubMed  CAS  Google Scholar 

  • Sweet RL. Imipenem/cilastatin in the treatment of obstetric and gynecologic infections: a review of worldwide experience. Reviews of Infectious Diseases 7(Suppl. 3): S522–S527, 1985

    PubMed  Google Scholar 

  • Tally FP, Jacobus NV. Susceptibility of Anaerobic bacteria to imipenem. Journal of Antimicrobial Chemotherapy 12(Suppl. D): 47–51, 1983

    PubMed  CAS  Google Scholar 

  • Tally FP, Jacobus NV, Gorbach SL. In vitro activity of N-formimidoyl thienamycin (MK0787). Antimicrobial Agents and Chemotherapy 18: 642–644, 1980

    PubMed  CAS  Google Scholar 

  • Tanimura H, Kobayashi N, Saito T, Yoshida K, Huang W-F, et al. Tissue concentrations and clinical efficacy of imipenem/cilastatin sodium in surgical infections. Chemotherapy (Tokyo) 33(Suppl. 4): 982–1000, 1985

    Google Scholar 

  • Tartaglione TA, Flint NB. Effect of imipenem-cilastatin and ciprofloxacin on tests for glycosuria. American Journal of Hospital Pharmacy 42: 602–605, 1985

    PubMed  CAS  Google Scholar 

  • Tausk F, Evans ME, Paterson LS, Federspiel CF, Stratton CW. Imipenem-induced resistance to antipseudomonal β-lactams in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 28: 41–45, 1985

    PubMed  CAS  Google Scholar 

  • Thabaut A, Philippon A, Meyran M. Activité comparée des bêta-lactamines actives sur Pseudomonas aeruginosa en fonction des phénotypes de résistance. Presse Médicale 13: 768–771, 1984

    CAS  Google Scholar 

  • Tischhauser G, Kayser FH. The in vitro activity of N-formimidoyl thienamycin compared with other broad-spectrum cephalosporins and with clindamycin and metronidazole. Infection 11: 219–226, 1983

    PubMed  CAS  Google Scholar 

  • Toda M, Sato K, Nakazawa H, Inoue M, Mitsuhashi S. Effect of N-formimidoyl thienamycin (MK0787) on β-lactamases and activity against β-lactamase-producing strains. Antimicrobial Agents and Chemotherapy 18: 837–838, 1980

    PubMed  CAS  Google Scholar 

  • Toma EC, Morisset R, Agbaba O, Phaneuf D. In vitro antagonism between N-formimidoyl thienamycin and aztreonam, ticarcillin and ticarcillin/clavulanic acid. Annales de Microbiologie 135B: 111–115, 1984

    PubMed  CAS  Google Scholar 

  • Topiel MS, Paleologo FP, Goldstein NH, Van Ness M, June C, et al. Comparative trial of imipenem and moxalactam in the treatment of serious bacterial infections. Current Therapeutic Research 40: 7–16, 1986

    Google Scholar 

  • Traub WH. Interactions of antimicrobial drugs and combined phagocytic/serum bactericidal activity of defibrinated human blood against Serratia marcescens. Chemotherapy 29: 121–127, 1983

    PubMed  CAS  Google Scholar 

  • Traub WHL. Clostridium perfringens Type A. Comparison of in vitro and in vivo activity of 12 antimicrobial drugs. Chemotherapy 32: 59–67, 1986

    PubMed  CAS  Google Scholar 

  • Traub WH, Spohr M, Bauer D. Streptococcus faecalis: in vitro susceptibility to antimicrobial drugs, single and combined, with and without defibrinated human blood. Chemotherapy 32: 270–285, 1986

    PubMed  CAS  Google Scholar 

  • Trumbore D, Pontzer R, Levison ME, Kaye D, Cynamon M, et al. Multicenter study of the clinical efficacy of imipenem/cilastatin for treatment of serious infections. Reviews of Infectious Diseases 7(Suppl. 3): 476–480, 1985

    Google Scholar 

  • Tutlane VA, McLoskey RV, Trent JA. In vitro comparison of N-formimidoyl thienamycin, piperacillin, cefotaxime, and cefoperazone. Antimicrobial Agents and Chemotherapy 20: 140–143, 1981

    PubMed  CAS  Google Scholar 

  • Tweardy DJ, Jacobs MR, Speck WT. Susceptibility of penicillin-resistant pneumococci to eighteen antimicrobials: implications for treatment of meningitis. Journal of Antimicrobial Chemotherapy 12: 133–139, 1983

    PubMed  CAS  Google Scholar 

  • Unertl K, Adam D, Sunder-Plassman L, Koller H, Martin E. Serum and lung tissue concentrations of imipenem. Abstract no. P-44-57. 14th International Congress of Chemotherapy, Kyoto, Japan, 23–28 Jun, 1985

  • Usui T, Kuno H, Kobayashi H, Matsui K, Kemi M. Toxicological studies of impenem/cilastatin sodium. Chemotherapy (Tokyo) 33(Suppl. 4): 207–216, 1985a

    CAS  Google Scholar 

  • Usui T, Kuno H, Kuruhara Y, Kobayashi H. Toxicological study of imipenem/cilastatin sodium. Chemotherapy (Tokyo) 33(Suppl. 4): 217–226, 1985b

    CAS  Google Scholar 

  • Van der Auwera P, Klastersky J, Lagast H, Husson M. Serum bactericidal activity and killing rate for volunteers receiving imipenem, imipenem plus amikacin, and ceftazidime plus amikacin against Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 30: 122–126, 1986

    PubMed  Google Scholar 

  • Verbist L, Verhaegen J. In vitro activity of N-formimidoyl thienamycin in comparison with cefotaxime, moxalactam, and ceftazidime. Antimicrobial Agents and Chemotherapy 19: 402–406, 1981

    PubMed  CAS  Google Scholar 

  • Verpooten GA, Verbist L, Buntinx AP, Entwistle LA, Jones KH, et al. The pharmacokinetics of imipenem (thienamycin formanidine) and the renal dehydropeptidase inhibitor cilastatin sodium in normal subjects and patients with renal failure. British Journal of Clinical Pharmacology 18: 183–193, 1984

    PubMed  CAS  Google Scholar 

  • Vuye A. Comparative stability of first, second and third generation cephalosporins and N-formimidoyl thienamycin against Gram-negative β-lactamases. Arzneimittel-Forschung 33: 1236–1239, 1983

    PubMed  CAS  Google Scholar 

  • Wade JC, Standiford HC, Drusano GL, Johnson DE, Moody MR, et al. Potential of imipenem as single-agent empiric antibiotic therapy of febrile neutropenic patients with cancer. American Journal of Medicine 78(Suppl. 5A): 62–71, 1985

    PubMed  CAS  Google Scholar 

  • Wang C, Calandra GB, Aziz MA, Brown KR. Efficacy and safety of imipenem/cilastatin: a review of worldwide clinical experience. Reviews of Infectious Diseases 7(Suppl. 3): 528–536, 1985

    Google Scholar 

  • Ward JI, Moellering Jr RC. Susceptibility of pneumococci to 14 beta-lactam agents: comparison of strains, resistant, intermediate-resistant and susceptible to penicillin. Antimicrobial Agents and Chemotherapy 20: 204–207, 1981

    PubMed  CAS  Google Scholar 

  • Watanakunakorn C, Tisone JC. Synergism between N-formimidoyl thienamycin and gentamicin or tobramycin against Enterococci. Antimicrobial Agents and Chemotherapy 22: 1082–1083, 1982

    PubMed  CAS  Google Scholar 

  • Welkon CJ, Long SS, Gilligan PH. Effect of imipenem-cilastatin therapy on fecal flora. Antimicrobial Agents and Chemotherapy 29: 741–743, 1986

    PubMed  CAS  Google Scholar 

  • Wexler HM, Finegold SM. In vitro activity of imipenem against anaerobic bacteria. Review of Infectious Diseases 7(Suppl. 3): S417–S425, 1985a

    CAS  Google Scholar 

  • Wexler HM, Finegold SM. Impact of imipenem/cilastatin therapy on normal fecal flora. American Journal of Medicine 78(Suppl. 6A): 41–46, 1985b

    PubMed  CAS  Google Scholar 

  • Wiemer CWC, Kubens B, Opferkuch W. Influence of imipenem on the serum resistance of Enterobacteriaceae. Reviews of Infectious Diseases 7(Suppl. 3): S426–S431, 1985

    PubMed  CAS  Google Scholar 

  • Wiley R, Lode H, Höffken G, Wagner J, Borner K. Ciprofloxacin versus imipenem/cilastatin: a prospective randomized study in 60 patients with severe infections. Abstract no. S-51-5. 14th International Congress of Chemotherapy, Kyoto, 23–28 Jun, 1985

  • Williams JD. Activity of imipenem against Pseudomonas and Bacteroides species. Reviews of Infectious Diseases 7(Suppl. 3): S411–S416, 1985

    PubMed  CAS  Google Scholar 

  • Winslow DL, Damme J, Dieckman E. Delayed bactericidal activity of β-lactam antibiotics against Listeria monocytogenes: antagonism of chloramphenicol and rifampin. Antimicrobial Agents and Chemotherapy 23: 555–558, 1983

    PubMed  CAS  Google Scholar 

  • Winston DJ, McGrattan MA, Busuttil RW. Imipenem therapy of Pseudomonas aeruginosa and other serious bacterial infections. Antimicrobial Agents and Chemotherapy 26: 673–677, 1984

    PubMed  CAS  Google Scholar 

  • Wise R, Andrews JM, Danks G. Comparison of in vitro activity of FCE 22101, a new penem, with those of other β-lactam antibiotics. Antimicrobial Agents and Chemotherapy 4: 909–914, 1983

    Google Scholar 

  • Wise R, Andrews JM, Patel N. N-Formimidoyl-thienamycin a novel β-lactam: an in vitro comparison with other β-lactam antibiotics. Journal of Antimicrobial Chemotherapy 7: 521–529, 1981

    PubMed  CAS  Google Scholar 

  • Witte JL, Sapico FL, Canawati HN. In vitro susceptibility of methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains to N-formimidoyl thienamycin. Antimicrobial Agents and Chemotherapy 22: 906–908, 1982

    PubMed  CAS  Google Scholar 

  • Yamaji T, Saito A, Shiba K, Kaji M, Miyahara T. Pharmacokinetics of MK-0787/MK-0791 in healthy adult male volunteers. Abstract no. P-44-54 presented at the 14th International Congress of Chemotherapy, Kyoto, 23–28 Jun, 1985

  • Yamamoto H, Kitano K, Shimura H. Fundamental and clinical studies on imipenem/cilastatin sodium. Chemotherapy (Tokyo) 33(Suppl. 4): 1032–1039, 1985a

    Google Scholar 

  • Yamamoto Y, Ikeda M, Arata J. Imipenem/cilastatin sodium in the field of dermatology. Chemotherapy (Tokyo) 33(Suppl. 4): 1103–1105, 1985b

    CAS  Google Scholar 

  • Yokoyama T, Miyoshi N, Kodama T, Ichikawa T, Hiyama E, et al. Preclinical and clinical studies of imipenem/cilastatin sodium in surgery. Chemotherapy (Tokyo) 33(Suppl. 4): 1021–1028, 1985

    CAS  Google Scholar 

  • Yotsuji A, Minami S, Inoue M, Mitsuhashi S. Properties of novel β-lactamases produced by Bacteroides fragilis. Antimicrobial Agents and Chemotherapy 24: 925–929, 1983

    PubMed  CAS  Google Scholar 

  • Yourassowsky E, Van der Linden MP, Lismont MJ, Crokaert F. Early response of Pseudomonas aeruginosa growth curve to cefsulodin and N-formimidoyl thienamycin. Proceedings of the 12th International Congress of Chemotherapy, Florence, Jul, 1981

  • Yura J, Shinagawa N, Ishikawa S, Tachi Y, Kobe A, et al. Fundamental and clinical studies of imipenem/cilastatin sodium in the surgical field. Chemotherapy (Tokyo) 33(Suppl. 4): 969–981, 1985

    Google Scholar 

  • Zajac BA, Fisher MA, Gibson GA, MacGregor RR. Safety and efficacy of high dose treatment with imipenem-cilastatin in seriously ill patients. Antimicrobial Agents and Chemotherapy 745–748, 1985

    Google Scholar 

  • Zinner SH, Klastersky J. In vitro activity of N-formimidoyl thienamycin (MK0787) alone and combined with other β-lactam compounds and gentamicin. Proceedings of the 12th International Congress of Chemotherapy, Florence, Jul, 1981

Download references

Author information

Authors and Affiliations

Authors

Additional information

Various sections of the manuscript reviewed by: J.F. Acar, Service De Microbiologie Medicale, Hôpital Saint-Joseph, Paris, France; V.P. Ackerman, Department of Microbiology, Royal North Shore Hospital, St Leonards, Australia; C.J. Fernandes, Department of Microbiology, Royal North Shore Hospital, St Leonards, Australia; A.M. Geddes, Department of Medicine, The University of Birmingham, Birmingham, England; R.N. Jones, Laboratories of the Kaiser-Permanente Medical Care Program, Clackamas, Oregon, USA; Y. Kawada, Department of Urology, Fukui Medical School, Fukui-Ken, Japan; T. Kesado, Institute of Anaerobic Bacteriology, Gifu University School of Medicine, Gifu, Japan; H.C. Neu, Department of Medicine, College of Physicians & Surgeons of Columbia University, New York, New York, USA; C.E. Nord, Department of Microbiology, Karolinska Institutet, Huddinge, Sweden; S.R. Norrby, Department of Infectious Diseases, University of Umeå, Umeå, Sweden; A.D. Russell, Welsh School of Pharmacy, University of Wales Institute of Science and Technology, Cardiff, Wales; A. Saito, Nagasaki University School of Medicine, Second Department of Internal Medicine, Nagasaki, Japan; D.J. Winston, Division of Infectious Diseases, Department of Medicine, UCLA Center for the Health Sciences, Los Angeles, California, USA; R. Wise, Department of Medical Microbiology, Dudley Road Hospital, Birmingham, England.

Imipenem plus cilastatin: ‘Primaxin’, ‘Tienam’, ‘Zienam’ (Merck Sharp and Dohme).

Unless otherwise stated, only the dose of imipenem is quoted in this review with the understanding that an equal amount of cilastatin was also administered.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clissold, S.P., Todd, P.A. & Campoli-Richards, D.M. Imipenem/Cilastatin. Drugs 33, 183–241 (1987). https://doi.org/10.2165/00003495-198733030-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-198733030-00001

Keywords

Navigation