Skip to main content
Log in

Mechanisms and Consequences of the Impaired Trans-Sulphuration Pathway in Liver Disease: Part I

Biochemical Implications

  • Published:
Drugs Aims and scope Submit manuscript

Summary

The energy-dependent conversion of methionine to S-adenosyl-L-methionine (SAMe) is catalysed by S-adenosyl-L-methionine synthetase (SAMe-synthetase) in the liver. In the hepatocyte, an equilibrium exists between the high and low molecular weight forms of SAMe-synthetase, which consist of a tetramer and a dimer, respectively, of a 48.5 kilodalton subunit. The 2 enzymic forms differ in their affinity for methionine and sensitivity to inhibition by pyrophosphate; 2 of the sulfhydryl groups of SAMe-synthetase have been identified as essential for the normal functioning of the enzyme.

In patients with liver cirrhosis, a marked reduction in the utilisation of the high molecular weight SAMe-synthetase and displacement of the equilibrium occur, the molecular mechanism of which has yet to be established. This loss of activity is associated with a delay in methionine clearance and impairment of the trans-sulphuration pathway, which normally eliminates excess methionine by oxidising homocysteine to sulphate anion. It is hypothesised that in normal liver function the essential sulfhydryl groups of SAMe-synthetase are protected from oxidation by glutathione, a by-product of the transsulphuration pathway. However, glutathione levels are reduced in liver cirrhosis, and this may result in increased oxidation of the essential sulfhydryl groups, and consequent inactivation of the enzyme. Thus, the trans-sulphuration pathway may play an important role in the maintenance of normal SAMe-synthetase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cabrero C, Alemany S. Conversion of rat liver S-adenosyl-L-methionine synthetase from high-Mr to low-Mr form by Li Br. Biochimica et Biophysica Acta 952: 277–281, 1988

    Article  PubMed  CAS  Google Scholar 

  • Cabrero C, Puerta J, Alemany S. Purification and comparison of two forms of S-adenosyl-L-methionine synthetase from rat liver. European Journal of Biochemistry 170: 299–304, 1987

    Article  PubMed  CAS  Google Scholar 

  • Cabrero C, Martin-Duce A, Ortiz P, Alemany S, Mato JM. Specific loss of the high-molecular-weight form of S-adenosyl-L-methionine synthetase in human liver cirrhosis. Hepatology 8: 1530–1534, 1988

    Article  PubMed  CAS  Google Scholar 

  • Cantoni GL. Biological methylation: selected aspects. Annual Review of Biochemistry 44: 435–451, 1975

    Article  PubMed  CAS  Google Scholar 

  • Chawla RK, Lewis FW, Kutner MH, Bate DM, Roy RGB, et al. Plasma cysteine, cystine, and glutathione in cirrhosis. Gastroenterology 87: 770–776, 1984

    PubMed  CAS  Google Scholar 

  • Comporti M, Benedetti A, Chieli E. Studies on in vitro peroxidation of liver lipids in ethanol treated rats. Lipids 8: 498–502, 1973

    Article  PubMed  CAS  Google Scholar 

  • Corrales F, Cabrero C, Pajares MA, Ortiz P, Duce AM, et al. Inactivation and dissociation of S-adenosylmethionine synthetase by modification of sulfhydryl groups and its possible occurrence in liver cirrhosis. Hepatology 11: 216–222, 1990

    Article  PubMed  CAS  Google Scholar 

  • Feo F, Pascale R, Garcea R, Daino L, Pirisi L, et al. Effect of the variations of S-adenosyl-L-methionine liver content on fat accumulation and ethanol metabolism in ethanol-intoxicated rats. Toxicology and Applied Pharmacology 83: 331–341, 1986

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein JD, Kyele WL, Martin JJ, Pick AM. Activation of cystathionine synthase by adenosylmethionine and adenosylethionine. Biochemical and Biophysical Research Communications 66: 81–87, 1975

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein JD, Martin JJ. Methionine metabolism in mammals: adaptation to methionine excess. Journal of Biological Chemistry 261: 1582–1587, 1986

    PubMed  CAS  Google Scholar 

  • Gahl WA, Finkelstein JD, Mullen KD, Bernardini I, Martin JJ, et al. Hepatic methionine adenosyltransferase deficiency in a 31-year-old man. American Journal of Human Genetics 40: 39–49, 1987

    PubMed  CAS  Google Scholar 

  • Gahl WA, Bernardini I, Finkelstein JD, Tangerman A, Martin JJ, et al. Transsulfuration in an adult with hepatic methionine adenosyltransferase deficiency. Journal of Clinical Investigation 81: 390–397, 1988

    Article  PubMed  CAS  Google Scholar 

  • Gaull GE, Rassin DK, Solomon GE, Harris RC, Sturman JA. Biochemical observations on so-called hereditary tyrosinemia. Pediatric Research 4: 337–344, 1970

    Article  PubMed  CAS  Google Scholar 

  • Horowitz JH, Rypins EB, Henderson JM, Heymsfield SB, Moffitt SD, et al. Evidence for impairment of transulfuration pathway in cirrhosis. Gastroenterology 81: 668–675, 1981

    PubMed  CAS  Google Scholar 

  • Jocelyn PC. Biochemistry of the SH group: the occurrence, chemical properties, metabolism and biological function of thiols and disulphides. Academic Press, London and New York, 1972

    Google Scholar 

  • Kaplowitz N. The importance and regulation of hepatic glutathione. Yale Journal of Biology and Medicine 54: 497–502, 1981

    PubMed  CAS  Google Scholar 

  • Kinsell LW, Harper HA, Marton HC, Michael GD, Weiss HA. Rate of disappearance from plasma of intravenously administered methionine in patients with liver damage. Science 106: 589–590, 1947

    Article  CAS  Google Scholar 

  • Kutzbach C, Stokstad CLR. Mammalian methylene-tetrahydrofolate reductase in rat liver by S-adenosyl-methionine. Biochimica et Biophysica Acta 139: 217–220, 1967

    Article  PubMed  CAS  Google Scholar 

  • Lieber CS, Casini A, De Carli LM, Kim C, Lowe N, et al. S-adenosyl-L-methionine attenuates alcohol-induced liver injury in the baboon. Hepatology 11: 165–172, 1990

    Article  PubMed  CAS  Google Scholar 

  • Markham GD, Satishchandran C. Identification of the reactive sulfhydryl groups of S-adenosylmethionine synthetase. Journal of Biological Chemistry 262: 8666–8770, 1988

    Google Scholar 

  • Martin-Duce C, Ortiz P, Cabrero C, Mato JM. S-adenosyl-L-methionine synthetase and phospholipid methyltransferase are inhibited in human cirrhosis. Hepatology 8: 65–68, 1988

    Article  CAS  Google Scholar 

  • Mato J M, Alemany S. What is the function of phospholipid methylation? Biochemical Journal 213: 1–10, 1983

    PubMed  CAS  Google Scholar 

  • Matsumoto C, Suma Y, Tsukada K. Changes in the activities of S-adenosylmethionine synthetase isozymes from rat with dietary methionine. Journal of Biochemistry 95: 287–290, 1984

    PubMed  CAS  Google Scholar 

  • Mitchell AD, Benevenga NJ. The role of transamination in methionine oxidation in the rat. Journal of Nutrition 108: 67–78, 1978

    PubMed  CAS  Google Scholar 

  • Mudd SH, Poole JR. Labile methyl balances for normal humans on various dietary regimens. Metabolism — Clinical and Experimental 24: 721–735, 1975

    Article  PubMed  CAS  Google Scholar 

  • Mudd SH, Ebert MH, Seriver CR. Labile methyl group balances in human: the role of sarcosine. Metabolism — Clinical and Experimental 29: 707–720, 1980

    Article  PubMed  CAS  Google Scholar 

  • Okada G, Watanabe Y, Tsukada K. Changes in patterns of S-adenosylmethionine synthetase in fetal and postnatal rat liver. Cancer Research 40: 2895–2897, 1980

    PubMed  CAS  Google Scholar 

  • Okada G, Teraoka H, Tsukada K. Multiple species of mammalian S-adenosylmethionine synthetase. Partial purification and characterization. Biochemistry 20: 934–940, 1981

    Article  PubMed  CAS  Google Scholar 

  • Stramentinoli G, Gulano M, Ideo G. Protective role of S-adenosyl-L-methionine on liver injury induced by D-galactosamine in rats. Biochemical Pharmacology 27: 1431–1433, 1978

    Article  PubMed  CAS  Google Scholar 

  • Sullivan DH, Hoffman JL. Fractionation and kinetic properties of rat liver and kidney methionine adenosyltransferase isozymes. Biochemistry 22: 1636–1641, 1983

    Article  PubMed  CAS  Google Scholar 

  • Tsukada K, Okada G. S-adenosylmethionine synthetase isozyme patterns from rat hepatoma induced by N-2-fluorenylacetamide. Biochemical and Biophysical Research Communications 94: 1078–1082, 1980

    Article  PubMed  CAS  Google Scholar 

  • Vendemiale G, Altomare E, Trizio T, LeGrazie C, Di Padova C, et al. Effects of oral S-adenosyl-L-methionine on hepatic glutathione in patients with liver disease. Scandinavian Journal of Gastroenterology 24: 407–415, 1989

    Article  PubMed  CAS  Google Scholar 

  • Videla LA, Iturriaga H, Pino ME, Bunout D, Valenzuela A, et al. Content of hepatic reduced glutathione in chronic alcoholic patients: influence of the length of abstinence and liver necrosis. Clinical Science 66: 283–290, 1984

    PubMed  CAS  Google Scholar 

  • Zeisel SH, Poole JR. Dietary intake of methionine: influence in mammals on brain S-adenosylmethionine. In Usdin E, et al. (Eds) Transmethylation, pp. 59–68, Elsevier, The Netherlands, 1979

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mato, J.M., Corrales, F., Martin-Duce, A. et al. Mechanisms and Consequences of the Impaired Trans-Sulphuration Pathway in Liver Disease: Part I. Drugs 40 (Suppl 3), 58–64 (1990). https://doi.org/10.2165/00003495-199000403-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199000403-00006

Keywords

Navigation