Skip to main content
Log in

The Biodemography of Variation in Human Frailty

  • Published:
Demography

Abstract

A population is composed of individuals who are heterogeneous in their susceptibility to death and disease. This heterogeneity is reflected in the age-specific incidence or mortality (hazard) function. This variation has typically been hidden—that is, not measured directly—and has generally been modeled in a purely empirical statistical way, because there is no theory in demography for the distribution of frailty. A substantial fraction of variation in frailty, however, has an underlying genetic basis, for which there is a formal theory. This theory, based on evolutionary biology and on the nature of mendelian transmission, provides prior constraints on the distribution of variation in the population as well as providing methods for identifying genes involved in many important diseases. The accumulating effects of environmental exposures with age are another major component of variation in frailty. In some important instances, this variation and its effect on the age-specific hazard function can also be understood in terms of cause-specific biological processes. These biological considerations may enable demographers to model frailty, and thus mortality, in a better way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bishop, D. T., & Skolnick, M. H. (1984). “Genetic Epidemiology of Cancer in Utah Genealogies: A Prelude to the Molecular Genetics of Common Cancers.” Journal of Cell Physiology, 3 (suppl.), 63–77.

    Article  Google Scholar 

  • Bock, G., & Collins, G. M. (1987). Molecular Approaches to Human Polygenic Disease, CIBA Foundation Symposium, No. 130. Chichester, UK: Wiley.

    Book  Google Scholar 

  • Boerwinkle, E., & Sing, C. F. (1987). “The Use of Measured Genotype Information in the Analysis of Quantitative Phenotypes in Man. Ill: The Role of the Apolipoprotein E Polymorphism in Determining Levels, Variability, and Covariability of Cholesterol, Betalipoprotein, and Triglycerides in a Sample of Unrelated Individuals.” American Journal of Medical Genetics, 27, 567–582.

    Article  Google Scholar 

  • Boerwinkle, E., Visvikis, S., Welsh, D., Steinmetz, J., Hanash, S. M., & Sing, C. F. (1987). “The Use of Measured Genotype Information in the Analysis of Quantitative Phenotypes in Man. II: Simultaneous Estimation of the Frequencies and Effects of the Apolipoprotein E Polymorphism and Residual Polygenic Effects on Cholesterol, Betalipoprotein and Triglyceride Levels.” Annals of Human Genetics, 51, 211–226.

    Article  Google Scholar 

  • Bonney, G. E., Lathrop, G. M., & Lalouel, J.-M. (1988). “Combined Linkage and Segregation Analysis Using Regressive Models.” American Journal of Human Genetics, 43, 29–37.

    Google Scholar 

  • Breslow, N. E., & Day, N. E. (1980). Statistical Methods in Cancer Research (Vol. 1): The Analysis of Case-Control Studies. Lyon, France: International Agency for Research on Cancer.

    Google Scholar 

  • —, (1987). Statistical Methods in Cancer Research (Vol. 2): The Design and Analysis of Cohort Studies. Lyon, France: International Agency for Research on Cancer.

    Google Scholar 

  • Cannon-Albright, L. A., Skolnick, M. H., Bishop, T., Lee, R. G., & Burt, R. W. (1988). “Common Inheritance of Susceptibility to Colonic Adenomatous Polyps and Associated Colorectal Cancers.” New England Journal of Medicine, 319, 533–537.

    Article  Google Scholar 

  • Chakraborty, R., Ferrell, R. E., Stern, M. P., Haffner, S. M., Hazuda, H. P., & Rosenthal, M. (1986). “Relationship of Prevalence of Non-insulin-dependent Diabetes Mellitus to Amerindian Admixture in the Mexican Americans of San Antonio, Texas.” Genetic Epidemiology, 3, 435–454.

    Article  Google Scholar 

  • Chakraborty, R., & Weiss, K. M. (1989). “Age-Specific Risks for Cancer as Determined by Multi-stage Models of Carcinogenesis.” In Statistics in Medicine, ed. T. Krishnan. Bombay, India: Himalaya Publishing House, pp. 64–91.

    Google Scholar 

  • Cook, P. J., Doll, R., & Fellingham, S. A. (1969). “A Mathematical Model for the Age Distribution of Cancer in Man.” International Journal of Cancer, 4, 93–112.

    Article  Google Scholar 

  • Doll, R., & Peto, R. (1978). “Cigarette Smoking and Bronchial Carcinoma: Dose and Time Relationships Among Regular Smokers and Life-Long Non-smokers.” Journal of Epidemiology and Community Health, 32, 303–313.

    Article  Google Scholar 

  • — (1980). The Causes of Cancer. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Elandt-Johnson, R. C. (1971). Probability Models and Statistical Methods in Genetics. New York: Wiley.

    Google Scholar 

  • Elston, R. C. (1981). “Segregation Analysis.” In Advances in Human Genetics (Vol. 11), eds. H. Harris & K. Hirschhorn. New York: Plenum, pp. 63–120.

    Google Scholar 

  • — (1986). “Modern Methods of Segregation Analysis.” In Modern Statistical Methods in Chronic Disease Epidemiology, eds. S. H. Moolgavkar & R. L. Prentice. New York: Wiley, pp. 213–224.

    Google Scholar 

  • Falconer, D. S. (1989). Introduction to Quantitative Genetics (3rd ed.). London: Longman.

    Google Scholar 

  • Hartl, D. L., & Clark, A. G. (1989). Principles of Population Genetics (2nd ed.). Sunderland, MA: Sinauer.

    Google Scholar 

  • Hedrick, P. W. (1985). Genetics of Populations. Boston, MA: Jones and Bartlett.

    Google Scholar 

  • Kahn, P., & Graf, T. (Eds.). (1986). Oncogenes and Growth Control. New York: Springer-Verlag.

    Google Scholar 

  • Levitan, M. (1988). Textbook of Human Genetics. New York: Oxford University Press.

    Google Scholar 

  • Lubin, J., & Bale, S. (1987). “Detection of Excess Risk in Family Data” (letter with reply). Genetic Epidemiology, 4, 451–456.

    Article  Google Scholar 

  • Lynch, H. T., Kimberling, W. J., Biscone, K. A., Lynch, J. F., Wagner, C. A., Brennan, K., Mailliard, J. A., Johnson, P. S., Soori, J. S., & McKenna, P. J. (1986). “Familial Heterogeneity of Colon Cancer Risk.” Cancer, 57, 2089–2096.

    Article  Google Scholar 

  • Manton, K. G., Malker, H., & Malker, B. (1986). “A Comparison of Temporal Change in U.S. and Swedish Lung Cancer 1950–51 to 1981–82.” Journal of the National Cancer Institute, 77, 665–675.

    Google Scholar 

  • Manton, K. G., & Soldo, B. J. (1985). “Dynamics of Health Changes in the Oldest Old: New Perspectives and Evidence.” Milbank Memorial Fund Quarterly I Health and Society, 63, 206–285.

    Article  Google Scholar 

  • Manton, K. G., & Stallard, E. (1984). Recent Advances in Mortality Analysis. New York: Academic Press.

    Google Scholar 

  • — (1988). Chronic Disease Modelling. Oxford, UK: Charles Griffin.

    Google Scholar 

  • Marx, J. (1990). “Many Gene Changes Found in Cancer.” Science, 246, 1386–1388.

    Article  Google Scholar 

  • McKay, F. W, Hanson, M. R., & Miller, R. W. (1982). Cancer Mortality in the United States, 1950–1977, National Cancer Institute Monographs, No. 59. Washington, DC: U.S. Government Printing Office.

    Google Scholar 

  • Moolgavkar, S. H. (1986). “Hormones and Multistage Carcinogenesis.” Cancer Surveys, 5, 635–648.

    Google Scholar 

  • Moolgavkar, S. H. (In press). “Stochastic Models of Carcinogenesis. In Handt ok of Statistics (Vol. 8), eds. C. R. Rao & R. Chakraborty. New York: Elsevier.

  • Morton, N. E. (1982). Outline of Genetic Epidemiology. Basel, Switzerland: Karger.

    Google Scholar 

  • Morton, N. E., and Maclean, C. J. (1974). “Analysis of Family Resemblance. Ill: Complex Segregation of Quantitative Traits.” American Journal of Human Genetics, 26, 489–503.

    Google Scholar 

  • Motulsky, A. G., Burke, W., Billings, P. R., & Ward, R. H. (1987). “Hypertension and the Genetics of Red Cell Membrane Abnormalities.” In Molecular Approaches to Human Potygenic Disease, CIBA Foundation Symposium, No. 130, eds. G. Bock & G. M. Collins. Chichester, UK: Wiley, pp. 150–160.

    Google Scholar 

  • Nei, M. (1987). Molecular Evolutionary Genetics. New York: Columbia University Press.

    Google Scholar 

  • Nei, M., Fuerst, P. A., & Chakraborty, R. (1976). “Testing the Neutral Mutation Hypothesis by Distribution of Single Locus Heterozygosity.” Nature, 262, 491–493.

    Article  Google Scholar 

  • Ott, J. (1985). Analysis of Human Genetic Linkage. Baltimore, MD: Johns Hopkins University Press.

    Google Scholar 

  • Robertson, A. (1967). “The Nature of Quantitative Genetic Variation.” In Heritage From Mendel, ed. R. A. Brink. Madison: University of Wisconsin Press, pp. 265–280.

    Google Scholar 

  • Schottenfeld, D., & Fraumeni, J. F (1981). Cancer Epidemiology and Prevention. Philadelphia, PA: Saunders.

    Google Scholar 

  • Schwartz, A. G., Boehnke, M., & Moll, P. P. (1988). “Family Risk Index as a Measure of Familial Heterogeneity of Cancer Risk: A Population-Based Study in Metropolitan Detroit.” American Journal of Epidemiology, 128, 524–535.

    Google Scholar 

  • Sing, C. F., & Boerwinkle, E. (1987). “Genetic Architecture of Inter-individual Variability in Apolipoprotein, Lipoprotein and Lipid Phenotypes.” In Molecular Approaches to Human Polygenic Disease, CIBA Foundation Symposium, No. 130, eds. G. Bock & G. M. Collins. Chichester, UK: Wiley, pp. 99–121.

    Google Scholar 

  • Sing, C. F., Boerwinkle, E., Moll, R P., & Templeton, A. R. (1988). “Characterization of Genes Affecting Quantitative Traits in Humans.“ In Proceedings of the 2nd International Conference on Quantitative Genetics, eds. B. S. Weir, E. J. Eisen, M. M. Goodman, & G. Namkoong. Sunderland. MA: Sinauer, pp. 250–269.

    Google Scholar 

  • Teich, N. M. (1986). “Oncogenes and Cancer.” In Introduction to the Cellular and Molecular Biology of Cancer, eds. L. M. Franks & N. M. Teich, Oxford. UK: Oxford University Press, pp. 200–228.

    Google Scholar 

  • Thompson, J. S., & Thompson, M. W. (1986). Genetics in Medicine (4th ed.). Philadelphia, PA: Saunders.

    Google Scholar 

  • Trussell, J., & Rodriguez, G. (In press). “Heterogeneity in Demographic Research.” In Convergent Questions in Genetics and Demography, eds. J. Adams, A. Hermalin, D. Lam, & P. E. Smouse. New York: Oxford University Press. UNSCEAR (United Nations Scientific Committee on the

  • Effects of Atomic Radiation. (1988). “Radiation Carcinogenesis in Man.” In Sources, Effects, and Risks of Ionizing Radiation. New York: United Nations, pp. 405–543.

    Google Scholar 

  • Vaupel, J. W. (1988). “Inherited Frailty and Longevity.” Demography, 25, 227–287.

    Article  Google Scholar 

  • Vaupel, J. W. (In press-a). “Kindred Lifetimes: Frailty Models in Population Genetics.” In Convergent Questions in Genetics and Demography, eds. J. Adams, A. Hermalin, D. Lam, & P. E. Smouse. New York: Oxford University Press.

  • Vaupel, J. W. (In press-b). “Relatives' Risks: Frailty Models of Life History Data.” Theoretical Population Biology.

  • Vaupel, J. W., Manton, K. G., & Stallard, E. (1979). “The Impact of Heterogeneity on Individual Frailty on the Dynamics of Mortality.” Demography, 16, 439–454.

    Article  Google Scholar 

  • Vaupel, J. W, & Yashin, A. I. (1985). “Heterogeneity's Ruses: Some Surprising Effects of Selection on Population Dynamics.” The American Statistician, 39, 176–185.

    Article  Google Scholar 

  • Vogel, F., & Motulsky, A. G. (1986). Human Genetics (2nd ed.). New York: Springer-Verlag.

    Google Scholar 

  • Weiss, K. M. (1985). “Phenotype Amplification' as Illustrated by Cancer of the Gallbladder in New World Peoples.” In Etiology of Complex Diseases in Small Populations: Ethnic Differences and Research Approaches, eds. R. Chakraborty & E. J. E. Szathmary. New York: Liss, pp. 179–198.

    Google Scholar 

  • — (1989). “Are the Known Causes of Death Related to the Human Life Span and Its Determination?” American Journal of Human Biology, 1, 307–320.

    Article  Google Scholar 

  • Weiss, K. M. (In press-a). “Biology, Homology, and Epidemiology.” In Convergent Issues in Genetics and Demography, eds. A. Hermalin, J. Adams, D. Lam, & P. E. Smouse. New York: Oxford University Press.

  • Weiss, K. M. (In press-b). “Medieval Mappaemundi and the Conceptual Map of Genetics.” In Papers in Honor of William J. Schull (as yet untitled festschrift volume), eds. C. F. Sing & C. L. Hanis. Oxford, UK: Oxford University Press.

  • Weiss, K. M., & Chakraborty, R. (1984). “Multistage Models and the Age Pattern of Familial Polyposis Coli.” Cancer Investigation, 2, 443–448.

    Article  Google Scholar 

  • — (1990). “Multistage Models and the Age-Patterns of Cancer: Does the Statistical Analogy Imply Genetic Homology?” In Familial Adenomatous Polyposis, ed. L. Herera. New York: Liss, pp. 79–91.

    Google Scholar 

  • Weiss, K. M., Chakraborty, R., Majumder, P. P., & Smouse, P. E. (1982). “Problems in the Assessment of Relative Risk of Chronic Disease Among Biological Relatives of Affected Individuals.” Journal of Chronic Diseases (now Journal of Clinical Epidemiology), 35, 539–551.

    Article  Google Scholar 

  • Weiss, K. M., Chakraborty, R., Smouse, P. E., Buchanan, A. V., & Strong, L. C. (1986). “Familial Aggregation of Cancer in Laredo, Texas: A Generally Low-Risk Mexican-American Population.” Genetic Epidemiology, 3, 121–143.

    Article  Google Scholar 

  • Weiss, K. M., Ferrell, R. E., & Hanis, C. L. (1984). “A New World Syndrome of Metabolic Diseases With a Genetic and Evolutionary Basis.” Yearbook of Physical Anthropology, 27, 153–178.

    Article  Google Scholar 

  • White, R., & Lalouel, J.-M. (1987). “Investigation of Genetic Linkage in Human Families.” Advances in Human Genetics, 16, 121–228.

    Google Scholar 

  • Whittemore, A., & Keller, J. B. (1978). “Quantitative Theories of Carcinogenesis.” SIAM Review, 20, 1–30.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, K.M. The Biodemography of Variation in Human Frailty. Demography 27, 185–206 (1990). https://doi.org/10.2307/2061448

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.2307/2061448

Keywords

Navigation