Skip to main content
Log in

Wavelet-based multifractal analysis of earthquakes temporal distribution in Mammoth Mountain volcano, Mono County, Eastern California

  • Research Article
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

This paper presents a wavelet-based multifractal approach to characterize the statistical properties of temporal distribution of the 1982–2012 seismic activity in Mammoth Mountain volcano. The fractal analysis of time-occurrence series of seismicity has been carried out in relation to seismic swarm in association with magmatic intrusion happening beneath the volcano on 4 May 1989. We used the wavelet transform modulus maxima based multifractal formalism to get the multifractal characteristics of seismicity before, during, and after the unrest. The results revealed that the earthquake sequences across the study area show time-scaling features. It is clearly perceived that the multifractal characteristics are not constant in different periods and there are differences among the seismicity sequences. The attributes of singularity spectrum have been utilized to determine the complexity of seismicity for each period. Findings show that the temporal distribution of earthquakes for swarm period was simpler with respect to pre- and post-swarm periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arneodo, A., E. Bacry, and J.F. Muzy (1995), The thermodynamics of fractals revisited with wavelets, Physica A 213,1–2, 232–275, DOI: 10.1016/0378-4371(94)00163-N.

    Article  Google Scholar 

  • Arneodo, A., Y. d’Aubenton-Carafa, E. Bacry, P.V. Graves, J.F. Muzy, and C. Thermes (1996), Wavelet based fractal analysis of DNA sequences, Physica D 96,1–4, 291–320, DOI: 10.1016/0167-2789(96)00029-2.

    Article  Google Scholar 

  • Arneodo, A., B. Audit, E. Bacry, S. Manneville, J.F. Muzy, and S.G. Roux (1998), Thermodynamics of fractal signals based on wavelet analysis: application to fully developed turbulence data and DNA sequences, Physica A 254,1–2, 24–45, DOI: 10.1016/S0378-4371(98)00002-8.

    Article  Google Scholar 

  • Arneodo, A., B. Audit, and P. Kestener (2007), Multi-fractal formalism based on the Continuous Wavelet transform, Scholarpedia 3,1–20, DOI: 10.4249/scholarpedia.4103.

    Google Scholar 

  • Bacry, E., J.F. Muzy, and A. Arneodo (1993), Singularity spectrum of fractal signals from wavelet analysis: exact results, J. Stat. Phys. 70,3–4, 635–674, DOI: 10.1007/BF01053588.

    Article  Google Scholar 

  • Caruso, F., S. Vinciguerra, V. Latora, A. Rapisarda, and S. Malone (2006), Multifractal analysis of Mount St. Helens seismicity as a tool for identifying eruptive activity, Fractals 14,3, 179–186, DOI: 10.1142/S0218348X06003180.

    Article  Google Scholar 

  • Castle, R.O., J.E. Estrem, and J.C. Savage (1984), Uplift across Long Valley Caldera, California, J. Geophys. Res. 89,B13, 11507–11516, DOI: 10.1029/JB089iB13p11507.

    Article  Google Scholar 

  • Christiansen, L.B., S. Hurwitz, M.O. Saar, S.E. Ingebritsen, and P.A. Hsieh (2005), Seasonal seismicity at western United States volcanic centers, Earth Planet. Sci. Lett. 240,2, 307–321, DOI: 10.1016/j.epsl.2005.09.012.

    Article  Google Scholar 

  • Crovelli, R.A., and C.C. Barton (1995), Fractals and the Pareto distribution applied to petroleum accumulation-size distributions. In: C.C. Barton and P.R. La Pointe (eds.), Fractals in Petroleum Geology and Earth Processes, Plenum Press, New York, 59–72, DOI: 10.1007/978-1-4615-1815-0_4.

    Chapter  Google Scholar 

  • Currenti, G., C. Del Negro, and G. Nunnari (2005), Inverse modelling of volcanomagnetic fields using a genetic algorithm technique, Geophys. J. Int. 163,1, 403–418, DOI: 10.1111/j.1365-246x.2005.02730.x.

    Article  Google Scholar 

  • de Souza, J., and S.P. Rostirolla (2011), A fast MATLAB program to estimate the multifractal spectrum of multidimensional data: Application to fractures, Comput. Geosci. 37,2, 241–249, DOI: 10.1016/j.cageo.2010.09.001.

    Article  Google Scholar 

  • Enescu, B., K. Ito, and Z.R. Struzik (2006), Wavelet-based multiscale resolution analysis of real and simulated time-series of earthquakes, Geophys. J. Int. 164,1, 63–74, DOI: 10.1111/j.1365-246X.2005.02810.x.

    Article  Google Scholar 

  • Eneva, M. (1994), Monofractal or multifractal: a case study of spatial distribution of mining-induced seismic activity, Nonlin. Processes Geophys. 1,2/3, 182–190, DOI: 10.5194/npg-1-182-1994.

    Article  Google Scholar 

  • Falconer, K. (2003), Fractal Geometry. Mathematical Foundations and Applications, 2nd ed., John Wiley & Sons Ltd, Chichester.

    Book  Google Scholar 

  • Farge, M. (1992), Wavelet transforms and their applications to turbulence, Ann. Rev. Fluid Mech. 24, 359–457, DOI: 10.1146/annurev.fl.24.010192.002143.

    Article  Google Scholar 

  • Farrar, C.D., M.L. Sorey, W.C. Evans, J.F. Howle, B.D. Kerr, B.M. Kennedy, C.Y. King, and J.R. Southon (1995), Forest-killing diffuse CO2 emission at Mammoth Mountain as a sign of magmatic unrest, Nature 376,6542, 675–678, DOI: 10.1038/376675a0.

    Article  Google Scholar 

  • Foulger, G.R., B.R. Julian, D.P. Hill, A.M. Pitt, P.E. Malin, and E. Shalev (2004), Non-double-couple microearthquakes at Long Valley caldera, California, provide evidence for hydraulic fracturing, J. Volcanol. Geoth. Res. 132,1, 45–71, DOI: 10.1016/S0377-0273(03)00420-7.

    Article  Google Scholar 

  • Geilikman, M.B., T.V. Golubeva, and V.F. Pisarenko (1990), Multifractal patterns of seismicity, Earth Planet. Sci. Lett. 99,1–2, 127–132, DOI: 10.1016/0012-821X(90)90076-A.

    Article  Google Scholar 

  • Goltz, C. (1997), Fractal and Chaotic Properties of Earthquakes, Lecture Notes in Earth Sciences, Vol. 77, Springer, Berlin Heidelberg, DOI: 10.1007/BFb0028316.

    Book  Google Scholar 

  • Goupillaud, P., A. Grossmann, and J. Morlet (1984), Cycle-octave and related transforms in seismic signal analysis, Geoexploration 23,1, 85–102, DOI: 10.1016/0016-7142(84)90025-5.

    Article  Google Scholar 

  • Grossmann, A., and J. Morlet (1984), Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM J. Math. Anal. 15,4, 723–736, DOI: 10.1137/0515056.

    Article  Google Scholar 

  • Hein, F.J. (1999), Mixed (“multi”) fractal analysis of Granite Wash fields/pools and structural lineaments, Peace River Arch area, northwestern Alberta, Canada; A potential approach for use in hydrocarbon exploration, Bull. Can. Petrol. Geol. 47,4, 556–572.

    Google Scholar 

  • Hill, D.P., R.A. Bailey, and A.S. Ryall (1985), Active tectonic and magmatic processes beneath Long Valley Caldera, eastern California: An overview, J. Geophys. Res. 90,B13, 11111–11120, DOI: 10.1029/JB090iB13p11111.

    Article  Google Scholar 

  • Hill, D.P., W.L. Ellsworth, M.J.S. Johnston, J.O. Langbein, D.H. Oppenheimer, A.M. Pitt, P.A. Reasenberg, M.L. Sorey, and S.R. McNutt (1990), The 1989 earthquake swarm beneath Mammoth Mountain, California: An initial look at the 4 May through 30 September activity, Bull. Seismol. Soc. Am. 80,2, 325–339.

    Google Scholar 

  • Hirabayashi, T., K. Ito, and T. Yoshii (1992), Multifractal analysis of earthquakes, Pure Appl. Geophys. 138,4, 591–610, DOI: 10.1007/BF00876340.

    Article  Google Scholar 

  • Jaffard, S. (1989), Hölder exponents at given points and wavelet coefficients, C. R. Acad. Sci. Paris Ser. I 308,4, 79–81.

    Google Scholar 

  • Jaffard, S. (1991), Pointwise smoothness, two-microlocalization and wavelet coefficients, Publ. Mat. 35,1, 155–168, DOI: 10.5565/PUBLMAT_35191_06.

    Article  Google Scholar 

  • Jaffard, S. (1997a), Multifractal formalism for functions. Part I: Results valid for all functions, SIAM J. Math. Anal. 28,4, 944–970, DOI: 10.1137/S0036141095282991.

    Article  Google Scholar 

  • Jaffard, S. (1997b), Multifractal formalism for functions. Part II: Self-similar functions, SIAM J. Math. Anal. 28,4, 971–998, DOI: 10.1137/S0036141095283005.

    Article  Google Scholar 

  • Kagan, Y.Y., and D.D. Jackson (1991), Long-term earthquake clustering, Geophys. J. Int. 104,1, 117–133, DOI: 10.1111/j.1365-246X.1991.tb02498.x.

    Article  Google Scholar 

  • Kagan, Y., and L. Knopoff (1980), Spatial distribution of earthquakes: the two-point correlation function, Geophys. J. Roy. Astron. Soc. 62,2, 303–320, DOI: 10.1111/j.1365-246X.1980.tb04857.x.

    Article  Google Scholar 

  • Kulkarni, O.C., R. Vigneshwar, V.K. Jayaraman, and B.D. Kulkarni (2005), Identification of coding and non-coding sequences using local Hölder exponent formalism, Bioinformatics 21,20, 3818–3823, DOI: 10.1093/bioinformatics/bti639.

    Article  Google Scholar 

  • Langbein, J., D. Dzurisin, G. Marshall, R. Stein, and J. Rundle (1995), Shallow and peripheral volcanic sources of inflation revealed by modeling two-color geodimeter and levelling data from Long Valley Caldera, California, 1988–1992, J. Geophys. Res. 100,B7, 12487–12495, DOI: 10.1029/95JB01052.

    Article  Google Scholar 

  • Mallat, S., and W.L. Hwang (1992), Singularity detection and processing with wavelets, IEEE Trans. Inf. Theory 38,2, 617–643, DOI: 10.1109/18.119727.

    Article  Google Scholar 

  • Mallat, S., and S. Zhong (1992), Characterization of signals from multiscale edges, IEEE Trans. Pattern Anal. Mach. Intellig. 14,7, 710–732, 10.1109/34.142909.

    Article  Google Scholar 

  • Mandelbrot, B.B. (1989), Multifractal measures, especially for the geophysicist, Pure Appl. Geophys. 131,1/2, 5–42, DOI: 10.1007/BF00874478.

    Article  Google Scholar 

  • Maruyama, F., K. Kai, and H. Morimoto (2011), Wavelet-based multifractal analysis of the El Niño/Southern Oscillation, the Indian Ocean dipole and the North Atlantic Oscillation, SOLA 7, 65–68, DOI: 10.2151/sola.2011-017.

    Article  Google Scholar 

  • McAteer, R.T.J., C.A. Young, J. Ireland, and P.T. Gallagher (2007), The bursty nature of solar flare X-ray emission, Astrophys. J. 662,1, 691–700, DOI: 10.1086/518086.

    Article  Google Scholar 

  • McKee, E.H. (1971), Tertiary igneous chronology of the Great Basin of western United States-Implications for tectonic models, Geol. Soc. Am. Bull. 82,12, 3497–3502, DOI: 10.1130/0016-7606(1971)82[3497:TICOTG]2.0.CO;2.

    Article  Google Scholar 

  • McNutt, S.R. (2002), Volcano seismology and monitoring for eruptions. In: W.H.K. Lee, H. Kanamori, P.C. Jennings, and C. Kisslinger (eds.), International Handbook of Earthquake and Engineering Seismology, Vol. 81, Part A, Academic Press, Massachusetts, 383–406, DOI: 10.1016/S0074-6142(02) 80228-5.

    Google Scholar 

  • Muzy, J.F., E. Bacry, and A. Arneodo (1991), Wavelets and multifractal formalism for singular signals: Application to turbulence data, Phys. Rev. Lett. 67,25, 3515–3518, DOI: 10.1103/PhysRevLett.67.3515.

    Article  Google Scholar 

  • Muzy, J.F., E. Bacry, and A. Arneodo (1993), Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method, Phys. Rev. E 47,2, 875–884, DOI: 10.1103/Phys RevE.47.875.

    Article  Google Scholar 

  • Muzy, J.F., E. Bacry, and A. Arneodo (1994), The multifractal formalism revisited with wavelets, Int. J. Bifurcation Chaos 4,2, 245, DOI: 10.1142/S0218127494000204.

    Article  Google Scholar 

  • Özger, M. (2011), Investigating the multifractal properties of significant wave height time series using a wavelet-based approach, J. Waterw. Port Coastal Ocean Eng. 137,1, 34–42, DOI: 10.1061/(ASCE)WW.1943-5460.0000062.

    Article  Google Scholar 

  • Pastén, D., V. Muñoz, A. Cisternas, J. Rogan, and J.A. Valdivia (2011), Monofractal and multifractal analysis of the spatial distribution of earthquakes in the central zone of Chile, Phys. Rev. E 84,6, 66123-1–66123-11, DOI: 10.1103/PhysRevE.84.066123.

    Article  Google Scholar 

  • Pitt, A.M., and D.P. Hill (1994), Long-period earthquakes in the Long Valley Caldera region, eastern California, Geophys. Res. Lett. 21,16, 1679–1682, DOI: 10.1029/94GL01371.

    Article  Google Scholar 

  • Prejean, S., A. Stork, W. Ellsworth, D. Hill, and B. Julian (2003), High precision earthquake locations reveal seismogenic structure beneath Mammoth Mountain, California, Geophys. Res. Lett. 30,24, 2247, DOI: 10.1029/2003GL018334.

    Article  Google Scholar 

  • Roux, S., J.F. Muzy, and A. Arneodo (1999), Detecting vorticity filaments using wavelet analysis: About the statistical contribution of vorticity filaments to intermittency in swirling turbulent flows, Eur. Phys. J. B 8,2, 301–322, DOI: 10.1007/s100510050694.

    Article  Google Scholar 

  • Sadovskiy, M.A., T.V. Golubeva, V.F. Pisarenko, and M.G. Shnirman (1984), Characteristic dimensions of rock and hierarchical properties of seismicity, Izv. — Phys. Solid Earth 20, 87–95.

    Google Scholar 

  • Smalley Jr., R.F., J.-L. Chatelain, D.L. Turcotte, and R. Prévot (1987), A fractal approach to the clustering of earthquakes: Applications to the seismicity of the New Hebrides, Bull. Seismol. Soc. Am. 77,4, 1368–1381.

    Google Scholar 

  • Sorey, M.L., W.C. Evans, B.M. Kennedy, J. Rogie, and A. Cook (1999), Magmatic gas emissions from Mammoth Mountain, Mono County, California, Calif. Geol. 52,5, 4–16.

    Google Scholar 

  • Stanley, H.E., L.A.N. Amaral, A.L. Goldberger, S. Havlin, P.C. Ivanov, and C.-K. Peng (1999), Statistical physics and physiology: Monofractal and multifractal approaches, Physica A 270,1–2, 309–324, DOI: 10.1016/S0378-4371(99)00230-7.

    Article  Google Scholar 

  • Telesca, L., V. Lapenna, and M. Macchiato (2004), Mono- and multi-fractal investigation of scaling properties in temporal patterns of seismic sequences, Chaos Soliton Fract. 19,1, 1–15, DOI: 10.1016/S0960-0779(03)00188-7.

    Article  Google Scholar 

  • Toledo, B.A., A.C.L. Chian, E.L. Rempel, R.A. Miranda, P.R. Muñoz, and J.A. Valdivia (2013), Wavelet-based multifractal analysis of nonlinear time series: The earthquake-driven tsunami of 27 February 2010 in Chile, Phys. Rev. E 87,2, 22821-1–22821-11, DOI: 10.1103/PhysRevE.87.022821.

    Article  Google Scholar 

  • Turcotte, D.L. (1992), Fractals and Chaos in Geology and Geophysics, Cambridge University Press, Cambridge.

    Google Scholar 

  • Venugopal, V., S.G. Roux, E. Foufoula-Georgiou, and A. Arneodo (2006), Revisiting multifractality of high-resolution temporal rainfall using a waveletbased formalism, Water Resour. Res. 42,6, W06D14, DOI: 10.1029/2005WR004489.

    Google Scholar 

  • Vicsek, T. (1992), Fractal Growth Phenomena, 2nd ed., World Scientific Publ., Singapore.

    Book  Google Scholar 

  • Wiemer, S. (2001), A software package to analyze seismicity: ZMAP, Seismol. Res. Lett. 72,3, 373–382, DOI: 10.1785/gssrl.72.3.373.

    Article  Google Scholar 

  • Wiemer, S., S.R. McNutt, and M. Wyss (1998), Temporal and three-dimensional spatial analysis of the frequency-magnitude distribution near Long Valley Caldera, California, Geophys. J. Int. 134,2, 409–421, DOI: 10.1046/j.1365-246x.1998.00561.x.

    Article  Google Scholar 

  • Zamani, A., and M. Agh-Atabai (2009), Temporal characteristics of seismicity in the Alborz and Zagros regions of Iran, using multifractal approach, J. Geodyn. 47,5, 271–279, DOI: 10.1016/j.jog.2009.01.003.

    Article  Google Scholar 

  • Zamani, A., and M. Agh-Atabai (2011), Multifractal analysis of the spatial distribution of earthquake epicentres in the Zagross and Alborz-Kopeh Dagh regions of Iran, Iran. J. Sci. Technol. A1, 39–51.

    Google Scholar 

  • Zamani, A., J. Samiee, and J.F. Kirby (2013), Estimating the mechanical anisotropy of the Iranian lithosphere using the wavelet coherence method, Tectonophysics 601, 139–147, DOI: 10.1016/j.tecto.2013.05.005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Pirouz Kolahi Azar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zamani, A., Kolahi Azar, A.P. & Safavi, A.A. Wavelet-based multifractal analysis of earthquakes temporal distribution in Mammoth Mountain volcano, Mono County, Eastern California. Acta Geophys. 62, 585–607 (2014). https://doi.org/10.2478/s11600-013-0184-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-013-0184-3

Key words

Navigation