Skip to main content
Log in

Nanostructured electrocatalysts immobilised on electrode surfaces and organic film templates

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The development of new electrocatalysts with the aim of enhancing the rate of electrochemical reactions has been a long-term goal of electrochemists. In part, this is due to the great importance of electrocatalysts in energy generation and environmental concerns. In this review, various methods of the preparation of nanostructured electrocatalysts and their applications after attachment to the electrode surface are described. Diazonium chemistry has been extensively used for the preparation and attachment of nanostructured electrocatalysts and this review thus describes the recent developments and applications of this chemistry in electrocatalysis. The preparation of nanostructured electrocatalysts including grafted molecular films and metal nanoparticles physically adsorbed on electrode surfaces and those attached to the surface by molecular links using diazonium chemistry is reviewed. Two methods for the attachment of nanoparticles by simple physical adsorption and by electrochemical deposition on molecular films are described and the electrochemical response of nanostructured electrocatalysts for some of the most common electrochemical reactions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allongue, P., Delamar, M., Desbat, B., Fagebaume, O., Hitmi, R., Pinson, J., & Savéant, J. M. (1997). Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts. Journal of the American Chemical Society, 119, 201–207. DOI: 10.1021/ja963354s.

    Article  CAS  Google Scholar 

  • Andrieux, C. P., Gonzalez, F., & Savéant, J. M. (1997). Derivatization of carbon surfaces by anodic oxidation of arylacetates. Electrochemical manipulation of the grafted films. Journal of the American Chemical Society, 119, 4292–4300. DOI: 10.1021/ja9636092.

    Article  CAS  Google Scholar 

  • Barbier, B., Pinson, J., Desarmot, G., & Sanchez, M. (1990). Electrochemical bonding of amines to carbon fiber surfaces toward improved carbon-epoxy composites. Journal of Electrochemical Society, 137, 1757–1764. DOI: 10.1149/1.2086794.

    Article  CAS  Google Scholar 

  • Baunach, T., Ivanova, V., Kolb, D. M., Boyen, H. G., Ziemann, P., Büttner, M., & Oelhafen, P. (2004). A new approach to the electrochemical metallization of organic monolayers: palladium deposition onto a 4,4’-dithiodipyridine self-assembled monolayer. Advanced Materials, 16, 2024–2028. DOI: 10.1002/adma.20040409.

    Article  CAS  Google Scholar 

  • Bayati, M., Abad, J. M., Bridges, C. A., Rosseinsky, M. J., & Schiffrin, D. J. (2008). Size control and electrocatalytic properties of chemically synthesized platinum nanoparticles grown on functionalised HOPG. Journal of Electroanalytical Chemistry, 623, 19–28. DOI: 10.1016/j.jelechem.2008.06.011.

    Article  CAS  Google Scholar 

  • Bélanger, D., & Pinson, J. (2011). Electrografting: a powerful method for surface modification. Chemical Society Reviews, 40, 3995–4048. DOI: 10.1039/c0cs00149j.

    Article  Google Scholar 

  • Bernard, M. C., Chaussé, A., Cabet-Deliry, E., Chehimi, M. M., Pinson, J., Podvorica, F., & Vautrin-Ul, C. (2003). Organic layers bonded to industrial, coinage, and noble metals through electrochemical reduction of aryldiazonium salts. Chemistry of Materials, 15, 3450–3462. DOI: 10.1021/cm034167d.

    Article  CAS  Google Scholar 

  • Brown, K. R., Walter, D. G., & Natan, M. J. (2000). Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape. Chemistry of Materials, 12, 306–313. DOI: 10.1021/cm980065p.

    Article  CAS  Google Scholar 

  • Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., & Whyman, R. (1994). Synthesis of thiol-derivatised gold nanoparticles in a two phase liquid-liquid system. Chemical Communications, 7, 801–802. DOI: 10.1039/c39940000801.

    Google Scholar 

  • Calabrese, G. S., Buchanan, R. M., & Wrighton, M. S. (1982). Electrochemical behaviour of a surface-confined naphtoquinone derivative. Electrochemical and photoelectrochemical reduction of oxygen to hydrogen peroxide at derivatized electrodes. Journal of the American Chemical Society, 104, 5786–5788. DOI: 10.1021/ja00385a040.

    Article  CAS  Google Scholar 

  • Corgier, B. P., Marquette, C. A., & Blum, L. J. (2005). Diazonium-protein adducts for graphite electrode microarrays modification: Direct and addressed electrochemical immobilization. Journal of the American Chemical Society, 127, 18328–18332. DOI: 10.1021/ja056946w.

    Article  CAS  Google Scholar 

  • Daniel, M. C., & Astruc, D. (2004). Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 104, 293–346. DOI: 10.1021/cr030698+.

    Article  CAS  Google Scholar 

  • Delamar, M, Hitmi, R., Pinson, J., & Saveant, J. M. (1992). Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts. Journal of the American Chemical Society, 114, 5883–5884. DOI: 10.1021/ja00040a074.

    Article  CAS  Google Scholar 

  • Downard, A. J., & Prince, M. J. (2001). Barrier properties of organic monolayers on glassy carbon electrodes. Langmuir, 17, 5581–5586. DOI: 10.1021/la010499q.

    Article  CAS  Google Scholar 

  • Downard, A. J., Tan, E. S. Q., & Yu, S. S. C. (2006). Controlled assembly of gold nanoparticles on carbon surfaces. New Journal of Chemistry, 30, 1283–1288. DOI: 10.1039/b605219c.

    Article  CAS  Google Scholar 

  • Frens, G. (1973). Controlled nucleation for the regulation of the particle size in monodisperse gold solutions. Nature. Physical Science, 241, 20–22. DOI: 10.1038/physci241020a0.

    CAS  Google Scholar 

  • Gam-Derouich, S., Mohouche-Chergui, S., Truong, S., Hassen-Chehimi, D. B., & Chehimi, M. M. (2011). Design of molecularly imprinted polymer grafts with embedded gold nanoparticles through the interfacial chemistry of aryl diazonium salts. Polymer, 52, 4463–4470. DOI: 10.1016/j.polymer.2011.08.007.

    Article  CAS  Google Scholar 

  • Ghosh, D., & Chen, S.W. (2008a). Palladium nanoparticles passivated by metal-carbon covalent linkages. Journal of Material Chemistry, 18, 755–762. DOI: 10.1039/b715397j.

    Article  CAS  Google Scholar 

  • Ghosh, D., & Chen, S. W. (2008b). Solid-state electronic conductivity of ruthenium nanoparticles passivated by metal-carbon covalent bonds. Chemical Physics Letters, 465, 115–119. DOI: 10.1016/j.cplett.2008.09.066.

    Article  CAS  Google Scholar 

  • Ghosh, D., Pradhan, S., Chen, W., & Chen, S. W. (2008). Titanium nanoparticles stabilized by Ti-C covalent bonds. Chemistry of Materials, 20, 1248–1250. DOI: 10.1021/cm703423k.

    Article  CAS  Google Scholar 

  • Grabar, K. C., Freeman, R. G., Hommer, M. B., & Natan, M. J. (1995). Preparation and characterization of Au colloid monolayers. Analytical Chemistry, 67, 735–743. DOI: 10.1021/ac00100a008.

    Article  CAS  Google Scholar 

  • Guo, D. J., & Li, H. L. (2005a). Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution. Carbon, 43, 1259–1264. DOI: 10.1016/j.carbon.2004.12.021.

    Article  CAS  Google Scholar 

  • Guo, D. J., & Li, H. L. (2005b). High dispersion and electrocatalytic properties of platinum on functional multiwalled carbon nanotubes. Electroanalysis, 17, 869–872. DOI: 10.1002/elan.200403164.

    Article  CAS  Google Scholar 

  • Harnisch, J. A., Pris, A. D., & Porter, M. D. (2001). Attachment of gold nanoparticles to glassy carbon electrodes via a mercaptobenzene film. Journal of the American Chemical Society, 123, 5829–5830. DOI: 10.1021/ja010564i.

    Article  CAS  Google Scholar 

  • Harper, J. C., Polsky, R., Dirk, S. M., Wheeler, D. A., & Brozik, S. M. (2007). Electroaddressable selective functionalization of electrode arrays: Catalytic NADH detection using aryl diazonium modified gold electrodes. Electroanalysis, 19, 1268–1274. DOI: 10.1002/elan.200703867.

    Article  CAS  Google Scholar 

  • Hu, G. Z., Ma, Y. G., Guo, Y., & Shao, S. J. (2008a). Electrocatalytic oxidation and simultaneous determination of uric acid and ascorbic acid on the gold nanoparticles-modified glassy carbon electrode. Electrochimica Acta, 53, 6610–6615. DOI: 10.1016/j.electacta.2008.04.054.

    Article  CAS  Google Scholar 

  • Hu, G. Z., Zhang, D. P., Wu, W. L., & Yang, Z. S. (2008b). Selective determination of dopamine in the presence of high concentration of ascorbic acid using nano-Au self-assembly glassy carbon electrode. Colloids and Surfaces B: Biointerfaces, 62, 199–205. DOI: 10.1016/j.colsurfb.2007.10.001.

    Article  CAS  Google Scholar 

  • Ingram, R. S., Hostetler, M. J., & Murray, R. W. (1997). Polyhetero-ω-functionalized alkanethiolate-stabilized gold cluster compounds. Journal of the American Chemical Society, 119, 9175–9178. DOI: 10.1021/ja971734n.

    Article  CAS  Google Scholar 

  • Ivanova, V., Baunach, T., & Kolb, D. M. (2005). Metal deposition onto a thiol-covered gold surface: A new approach. Electrochimica Acta, 50, 4283–4288. DOI: 10.1016/j.electacta.2005.05.047.

    Article  CAS  Google Scholar 

  • Jürmann, G., Schiffrin, D. J., & Tammeveski, K. (2007). The pH-dependence of oxygen reduction on quinone-modified glassy carbon electrodes. Electrochimica Acta, 53, 390–399. DOI: 10.1016/j.electacta.2007.03.053.

    Article  Google Scholar 

  • Kannan, P., & Abraham John, S. (2009). Determination of nanomolar uric and ascorbic acids using enlarged gold nanoparticles modified electrode. Analytical Biochemistry, 386, 65–72. DOI: 10.1016/j.ab.2008.11.043.

    Article  CAS  Google Scholar 

  • Kariuki, J. K., & McDermott, M. T. (1999). Nucleation and growth of functionalized aryl films on graphite electrodes. Langmuir, 15, 6534–6540. DOI: 10.1021/la990295y.

    Article  CAS  Google Scholar 

  • Katz, E., Willner, I., & Wang, J. (2004). Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis, 16, 19–44. DOI: 10.1002/elan.200302930.

    Article  CAS  Google Scholar 

  • Kullapere, M., Marandi, M., Matisen, L., Mirkhalaf, F., Carvalho, A. E., Maia, G., Sammelselg, V., & Tammeveski, K. (2011). Blocking properties of gold electrodes modified with 4-nitrophenyl and 4-decylphenyl group. Journal of Solid State Electrochemistry, in press. DOI: 10.1007/s10008-011-1381-0.

  • Kullapere, M., Mirkhalaf, F., & Tammeveski, K. (2010). Electrochemical behaviour of glassy carbon electrodes modified with aryl groups. Electrochimica Acta, 56, 166–173. DOI: 10.1016/j.electacta.2010.08.104.

    Article  CAS  Google Scholar 

  • Laurentius, L., Stoyanov, S. R., Gusarov, S., Kovalenko, A., Du, R., Lopinski, G. P., & McDermott, M. T. (2011). Diazomiumderived aryl films on gold nanoparticles: Evidence for a carbon-gold covalent bond. ACS Nano, 5, 4219–4227. DOI: 10/1021/nn201110r.

    Article  CAS  Google Scholar 

  • Leite, E. R. (Ed.) (2009). Nanostructured materials for electrochemical energy production and storage. New York, NY, USA: Springer. DOI: 10.1007/978-0-387-49323-7.

    Google Scholar 

  • Lennox, R. B. (2001). Thiol-functionalized nanoparticles. In K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, & S. Mahajan (Eds.), Encyclopedia of materials: Science and technology (Vol. 10, pp. 9344–9348). Oxford, UK: Elsevier. DOI: 10.1016/b0-08-043152-6/01683-1.

    Chapter  Google Scholar 

  • Liu, G. Z., Böcking, T., & Gooding, J. J. (2007). Diazonium salts: Stable monolayers on gold electrodes for sensing applications. Journal of Electroanalytical Chemistry, 600, 335–344. DOI: 10.1016/j.elechem.2006.09.012.

    Article  CAS  Google Scholar 

  • Liu, G. Z., Liu, J. Q., Böcking, T., Eggers, P. K., & Gooding, J. J. (2005). The modification of glassy carbon and gold electrodes with aryl diazonium salt: The impact of the electrode materials on the rate of heterogeneous electron transfer. Chemical Physics, 319, 136–146. DOI: 10.1016/j.chemphys.2005.03.033.

    Article  CAS  Google Scholar 

  • Liu, G. Z., Luais, E., & Gooding, J. J. (2011). The fabrication of stable gold nanoparticle-modified interfaces for electrochemistry. Langmuir, 27, 4176–4183. DOI: 10.1021/la104373v.

    Article  CAS  Google Scholar 

  • Liu, J. Y., Cheng, L., Liu, B. F., & Dong, S. J. (2000a). Covalent modification of a glassy carbon surface by 4-aminobenzoic acid and its application in fabrication of a polyoxometalates-consisting monolayer and multilayer film. Langmuir, 16, 7471–7476. DOI: 10.1021/la9913506.

    Article  CAS  Google Scholar 

  • Liu, S. Q., Tang, Z. Y., Wang, E. K., & Dong, S. J. (2000b). Electrocrystallized platinum nanoparticle on carbon substrate. Electrochemistry Communications, 2, 800–804. DOI: 10.1016/s1388-2481(00)00125-9.

    Article  CAS  Google Scholar 

  • Lin, T. H., & Hung, W. H. (2009). Electrochemical deposition of gold nanoparticles on a glassy carbon electrode modified with sulfanilic acid. Journal of the Electrochemical Society, 156(2), D45–D50. DOI: 10.1149/1.3033524.

    Article  CAS  Google Scholar 

  • Liz-Marzàn, L. M., & Kamat, P. V. (2003). Nanoscale materials. Dordrecht, The Netherlands: Kluwer Academic Publications.

    Google Scholar 

  • Lou, Y. B., Maye, M. M., Han, L., Lou, J., & Zhong, C. J. (2001). Gold-platinum alloy nanoparticle assembly as catalyst for methanol electrooxidation. Chemical Communications, 5, 473–474. DOI: 10.1039/b008669j.

    Article  Google Scholar 

  • Mahouche-Chergui, S., Gam-Derouich, S., Mangeney, C., & Chehimi, M. M. (2011). Aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces. Chemical Society Reviews, 40, 4143–4166. DOI: 10.1039/c0cs00179a.

    Article  CAS  Google Scholar 

  • Manolova, M., Ivanova, V., Kolb, D. M., Boyen, H. G., Ziemann, P., Büttner, M., Romanyuk, A., & Oelhafen, P. (2005). Metal deposition onto thiol-covered gold: Platinum on a 4-mercaptopyridine SAM. Surface Science, 590, 146–153. DOI: 10.1016/j.susc.2005.06.005.

    Article  CAS  Google Scholar 

  • Manolova, M., Kayser, M., Kolb, D. M., Boyen, H. G., Ziemann, P., Mayer, D., & Wirth, A. (2007). Rhodium deposition onto a 4-mercaptopyridine SAM on Au(111). Electrochimica Acta, 52, 2740–2745. DOI: 10.1016/j.electacta.2006.08.038.

    Article  CAS  Google Scholar 

  • Maye, M. M., Lou, Y. B., & Zhong, C. J. (2000). Core-shell gold nanoparticle assembly as novel electrocatalyst of CO oxidation. Langmuir, 16, 7520–7523. DOI: 10.1021/la000503i.

    Article  CAS  Google Scholar 

  • McCreery, R. L. (2004). Molecular electronic junctions. Chemistry of Materials, 16, 4477–4496. DOI: 10.1021/cm049517q.

    Article  CAS  Google Scholar 

  • Miles, D. T., & Murray, R. W. (2001). Redox and doublelayer charging of phenothiazine functionalized monolayer-protected clusters. Analytical Chemistry, 73, 921–929. DOI: 10.1021/ac0012647.

    Article  CAS  Google Scholar 

  • Mirkhalaf, F., Mason, T. J., Morgan, D. J., & Saez, V. (2011). Frequency effects on the surface coverage of nitrophenyl films ultrasonically grafted onto indium tin oxide. Langmuir, 27, 1853–1858. DOI: 10.1021/la104402z.

    Article  CAS  Google Scholar 

  • Mirkhalaf, F., Paprotny, J., & Schiffrin, D. J. (2006). Synthesis of metal nanoparticles stabilized by metal-carbon bonds. Journal of the American Chemical Society, 128, 7400–7401. DOI: 10.1021/ja058687g.

    Article  CAS  Google Scholar 

  • Mirkhalaf, F., & Schiffrin, D. J. (2010). Electrocatalytic oxygen reduction on functionalized gold nanoparticles incorporated in a hydrophobic environment. Langmuir, 26, 14995–15001. DOI: 10.1021/la1021565.

    Article  CAS  Google Scholar 

  • Mirkhalaf, F., Tammeveski, K., & Schiffrin, D. J. (2004). Substituent effects on the electrocatalytic reduction of oxygen on quinone-modified glassy carbon electrodes. Physical Chemistry Chemical Physics, 6, 1321–1327. DOI: 10.1039/b3159 63a.

    Article  CAS  Google Scholar 

  • Mirkhalaf, F., Tammeveski, K., & Schiffrin, D. J. (2009). Electrochemical reduction of oxygen on nanoparticulate gold electrodeposited on a molecular template. Physical Chemistry Chemical Physics, 11, 3463–3471. DOI: 10.1039/b818439a.

    Article  CAS  Google Scholar 

  • Mirkin, C. A., Letsinger, R. L., Mucic, R. C., & Storhoff, J. J. (1996). A DNA based method for rationally assembling nanoparticles onto macroscopic materials. Nature, 382, 607–609. DOI: 10.1038/382607a0.

    Article  CAS  Google Scholar 

  • Murray, R. W. (2008). Nanoelectrochemistry: Metal nanoparticles, nanoelectrodes, and nanopores. Chemical Reviews, 108, 2688–2720. DOI: 10.1021/cr068077e.

    Article  CAS  Google Scholar 

  • Noël, J. M., Zigah, D., Simonet, J., & Hapiot, P. (2010). Synthesis and immobilization of Ag° nanoparticles on diazonium modified electrodes: SECM and cyclic voltammetry study of the modified interfaces. Langmuir, 26, 7638–7643. DOI: 10.1021/la 904413h.

    Article  Google Scholar 

  • Oyama, M. (2010). Recent nanoarchitectures in metal nanoparticle-modified electrodes for electroanalysis. Analytical Sciences, 26, 1–12. DOI: 10.2116/analsci.26.1.

    Article  CAS  Google Scholar 

  • Polsky, R., Harper, J. C., Wheeler, D. A., Dirk, S. M., Arango, D. C., & Brozik, S. M. (2008). Electrically addressable diazonium-functionalized antibodies for multianalyte electrochemical sensor applications. Biosensors and Bioelectronics, 23, 757–764. DOI: 10.1016/j.bios.2007.08.013.

    Article  CAS  Google Scholar 

  • Qu, D., & Uosaki, K. (2006). Electrochemical metal deposition on top of an organic monolayer. Journal of Physical Chemistry, B., 110, 17570–17577. DOI: 10.1021/jp0632135.

    Article  CAS  Google Scholar 

  • Raj, C. J., Abdelrahman, A. I., & Ohsaka, T. (2005). Gold nanoparticle-assisted electroreduction of oxygen. Electrochemistry Communications, 7, 888–893. DOI: 10.1016/j.elecom2005.06.005.

    Article  CAS  Google Scholar 

  • Raj, C. J., Okajima, T., & Ohsaka, T. (2003). Gold nanoparticle arrays for the voltammetric sensing of dopamine. Journal of Electroanalytical Chemistry, 543, 127–133. DOI: 10.1016/s0022-0728(02)01481-x.

    Article  CAS  Google Scholar 

  • Rosi, L. N., & Mirkin, C. A.(2005). Nanostructures in biodiagnostics. Chemical Reviews, 105, 1547–1562. DOI: 10.1021/cr030067f.

    Article  CAS  Google Scholar 

  • Sarapuu, A., Vaik, K., Schiffrin, D. J., & Tammeveski, K. (2003). Electrochemical reduction of oxygen on anthraquinone-modified glassy carbon electrodes in alkaline solution. Journal of Electroanalytical Chemistry, 541, 23–29. DOI: 10.1016/s0022-0728(02)01311-6.

    Article  CAS  Google Scholar 

  • Sides, C. R., & Martin, C. R. (2009). Deposition into templates. In P. Schmuki, & S. Virtanen (Eds.), Electrochemistry at the nanoscale (pp. 279–320). New York, NY, USA: Springer. DOI: 10.1007/978-0-387-73582-5.

    Chapter  Google Scholar 

  • Sivanesan, A., Kannan, P., & Abraham John, S. (2007). Electrocatalytic oxidation of ascorbic acid using a single layer of gold nanoparticles immobilized on 1,6-hexanedithiol modified gold electrode. Electrochimica Acta, 52, 8118–8124. DOI: 10.1016/j.electacta.2007.07.020.

    Article  CAS  Google Scholar 

  • Stewart, M. P., Maya, F., Kosynkin, D. V., Dirk, S. M., Stapleton, J. J., McGuiness, C. L., Allara, D. L., & Tour, J. M. (2004). Direct covalent grafting of conjugated molecules onto Si, GaAs, and Pd surfaces from aryldiazonium salts. Journal of the American Chemical Society, 126, 370–378. DOI: 10.1021/ja0383120.

    Article  CAS  Google Scholar 

  • Stolarczyk, K., & Bilewicz, R. (2006). Electron transport through alkanethiolate films decorated with monolayer protected gold clusters. Electrochimica Acta, 51, 2358–2365. DOI: 10.1016/j.electacta.2005.03.091.

    Article  CAS  Google Scholar 

  • Stolarczyk, K., Pałlys, B., & Bilewicz, R. (2004). Catalytic properties of 4-hydroxythiophenol protected gold nanoclusters supported on gold electrodes. Journal of Electroanalytical Chemistry, 564, 93–98. DOI: 10.1016/j.elechem.2003.09.031.

    Article  CAS  Google Scholar 

  • Tammeveski, K., Kontturi, K., Nichols, R. J., Potter, R. J., & Schiffrin, D. J. (2001). Surface redox catalysis for O2 reduction on quinone-modified glassy carbon electrodes. Journal of Electroanalytical Chemistry, 515, 101–112. DOI: 10.1016/s0022-0728(01)00633-7.

    Article  CAS  Google Scholar 

  • Tang, Z. Y., Liu, S. Q., Dong, S. J., & Wang, E. K. (2001). Electrochemical synthesis of Ag nanoparticles on functional carbon surfaces. Journal of Electroanalytical Chemistry, 502, 146–151. DOI: 10.1016/s0022-0728(01)00344-8.

    Article  CAS  Google Scholar 

  • Templeton, A. C., Wuelfing, W. P., & Murray, R. W. (2000). Monolayer-protected cluster molecules. Accounts of Chemical Research, 33, 27–36. DOI: 10.1021/ar9602664.

    Article  CAS  Google Scholar 

  • Turkevich, J., Stevenson, P. C., & Hillier, J. (1953). The formation of colloidal gold. Journal of Physical Chemistry, 57, 670–673. DOI: 10.1021/j150508a015.

    Article  CAS  Google Scholar 

  • Urchaga, P., Weissmann, M., Baranton, S., Girardeau, T., & Coutanceau, C. (2009). Improvement of the platinum nanoparticles-carbon substrate interaction by insertion of a thiophenol molecular bridge. Langmuir, 25, 6543–6550. DOI: 10.1021/la9000973.

    Article  CAS  Google Scholar 

  • Vaik, K., Sarapuu, A., Tammeveski, K., Mirkhalaf, F., & Schiffrin, D. J. (2004). Oxygen reduction on phenanthrene-quinone-modified glassy carbon electrodes in 0.1 M KOH. Journal of Electroanalytical Chemistry, 564, 159–166. DOI: 10.1016/j.elechem2003.08.024.

    Article  CAS  Google Scholar 

  • Vayenas, C. G., Beblis, S., Pliangos, C., Brosda, S., & Tsiplakides, D. (2002). Electrochemical activation of catalysis. New York, NY, USA: Kluwer Academic Publishers.

    Google Scholar 

  • Vil`a, N., Van Brussel, M., DłAmours, M., Marwan, J., Buess-Herman, C., & Bélanger, D. (2007). Metallic and bimetallic Cu/Pt species supported on carbon surfaces by means of substituted phenyl groups. Journal of Electroanalytical Chemistry, 609, 85–93. DOI: 10.1016/j.jelechem.2007.06.026.

    Article  CAS  Google Scholar 

  • Wang, L., Bai, J. Y., Huang, P. F., Wang, H. J., Zhang, L. Y., & Zhao, Y. Q. (2006a). Self-assembly of gold nanoparticles for the voltammetric sensing of epinephrine. Electrochemistry Communications, 8, 1035–1040. DOI: 1016/jelecom.2006.08.12.

    Article  CAS  Google Scholar 

  • Wang, L., Bai, J. Y., Huang, P. F., Wang, H. J., Zhang, L. Y., & Zhao, Y. Q. (2006b). Nanostructured gold colloid electrode based on in situ functionalized self-assembled monolayers on gold electrode. Electrochemistry Communications, 8, 18251829. DOI: 1016/j.elecom.2006.08.013.

    Google Scholar 

  • Welch, C. M., & Compton, R. G. (2006). The use of nanoparticles in electroanalysis: a review. Analytical and Bioanalytical Chemistry, 384, 601–619. DOI: 10.1007/s00216-005-0230-3.

    Article  CAS  Google Scholar 

  • Wildgoose, G. G, Banks, C. E., & Compton, R. G. (2006). Metal nanoparticles and related materials supported on carbon nanotubes. Methods and applications. Small, 2, 182–193. DOI: 10:1002/smll.200500324.

    CAS  Google Scholar 

  • Wilson, R. (2008). The use of gold nanoparticles in diagnostics and detection. Chemical Society Reviews, 37, 2028–2045. DOI: 10.1039/b712179m.

    Article  CAS  Google Scholar 

  • Yee, C. K., Jordan, R., Ulman, A., White, H., King, A., Rafailovich, M., & Sokolov, J. (1999). Novel one-phase synthesis of thiol functionalized gold, palladium, and iridium nanoparticles using superhydride. Langmuir, 15, 3486–3491. DOI: 10.1021/la990015e.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fakhradin Mirkhalaf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirkhalaf, F., Graves, J.E. Nanostructured electrocatalysts immobilised on electrode surfaces and organic film templates. Chem. Pap. 66, 472–483 (2012). https://doi.org/10.2478/s11696-011-0110-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0110-6

Keywords

Navigation