Skip to main content
Log in

The co-expression of 4-hydroxynonenal and prominin-1 in glioblastomas

  • Research Article
  • Published:
Translational Neuroscience

Abstract

Oxidative stress (OS) is the condition that occurs when the anti-oxidative capacity of tissues and cells is overcome. The oxidative damage of cells is caused by free radicals which are products of OS. Lipid peroxidation is an autocatalitic process caused by OS which damages lipids and causes production of highly reactive species such as 4-hyroxynonenal (HNE). Recent findings have shown an increase in HNE-immunopositivity when compared to grade of astrocytic tumors. The cancer stem cell hypothesis suggests that not all cells in the tumor have the same ability to proliferate and maintain the growth of the tumor. Only a relatively small fraction of cells in the tumor, termed cancer stem cells, posses the ability to proliferate and self-renew extensively and expresses the surface marker CD133 (prominin-1). CNS tissue damage via trauma, viruses and ishaemia, increases the amount of OS production, which damages endothelial cells and consequently results in excess production of bone marrow-derived endothelial progenitor cells (EPCs). EPCs are immunoreactive for CD133 and CD34 and are thus important in the process of angiogenesis. Results of our study confirmed the main hypothesis, i.e.the proportional expression and distribution of CD133 and HNE in tumor cells, mesenchymal stroma, blood vessels and in the areas of necrosis, probably due to permanent OS in tumors, whose products continue to damage the endothelial cells and cause an excess production of EPCs. Identification of coexpression HNE and CD133 in GBM has important implication for the understanding of propagation of tumors into higher grade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siems W. G., Sommerburg O., Mayer H., Grune T., Die wichigsten Radikalquellen in menchlichen Organismus, Pharm. Ztg., 1998, 143, 11–25

    Google Scholar 

  2. Halliwell B., Free radicals, antioxidants and human disease: curiosity, cause or consequence?, Lancet, 1994, 344, 721–723

    Article  PubMed  CAS  Google Scholar 

  3. Esterbauer H., Schaur F. J., Zollner H., Chemistry and biochemistry of 4-hydroxinonenal, malonaldehyde and related aldehydes, Free Radic Biol Med, 1991, 11, 81–128

    Article  PubMed  CAS  Google Scholar 

  4. Sies H., Oxidative stress: an introduction in oxidative stress oxidants and antioxidants, Academic Press, London, 1991, 319–336

    Google Scholar 

  5. Cerruti P. A., Prooxidant states and tumor promotion, Science, 1985, 227, 375–381

    Article  Google Scholar 

  6. Žarković N., Mechanismen der Tumorenstehung, Pharm. Ztg., 2000, 145, 239–245

    Google Scholar 

  7. Fehér J., Csomós G., Vereckei A., Free radical reactions in medicine, Springer-Verlag, Berlin, Heidelberg, New York, 1987

    Google Scholar 

  8. Ames B. N., Shigenaga M. K., Hagen T. M., Oxidants, antioxidants, and the degenerative disease of aging, Proc. Natl. Acad. Sci. USA, 1993, 90, 7915–7922

    Article  PubMed  CAS  Google Scholar 

  9. Pellegrini-Giampietro D.E., Free radicals and the pathogenesis of neuronal death: Cooperative role of excitatory amino acids, Free Radicals in Diagnostic Medicine (ed. Armstrong D.), Plenum Press, New York, 1994, 59–97

    Google Scholar 

  10. Jurić-Sekhar G., Žarković K., Waeg G. et al., Distribution of 4-hydroxynonenal-protein conjugates as a marker of lipid peroxidation and parameter of malignancy in astrocytic and ependymal tumors of the brain, Tumori, 2009, 95, 762–768

    PubMed  Google Scholar 

  11. Singh S. K., Clarke I. D., Hide T. et al., Cancer stem cells in nervous system tumors, Oncogene, 2004, 23, 7267–7273

    Article  PubMed  CAS  Google Scholar 

  12. Corbeil D., Roper K., Fargeas C. A. et al., Prominin: a story of cholesterol, plasma membrane protrusions and human pathology, Traffic, 2001, 2, 82–91

    Article  PubMed  CAS  Google Scholar 

  13. Kros J., Zheng P., Vasculogenesis in human gliomas, Virchows Arch., 2007, 451, 192

    Google Scholar 

  14. Zheng P. P., Hop W. C., Luider T.M. et al., Increased levels of circulating endothelial progenitor cells and circulating endothelial nitric oxide synthase in patients with gliomas, Ann. Neurol., 2007, 62, 40–48

    Article  PubMed  CAS  Google Scholar 

  15. Ribatti D., The involvement of endothelial progenitor cells in tumor angiogenesis, J. Cell. Mol. Med., 2004, 8, 294–300

    Article  PubMed  CAS  Google Scholar 

  16. Louis D. N., Ohgaki H., Wiestler O.D., et al., WHO Classification of Tumours of the Central Nervous System, IARC, Lyon, 2007

    Google Scholar 

  17. Waeg G., Dimsity G., Esterbauer H., Monoclonal antibodies for detection of 4-hydroxynonenal modified proteins, Free Rad. Res., 1996, 25, 149–159

    Article  CAS  Google Scholar 

  18. Ming G. L., Song H., Adult neurogenesis in the mammalian central nervous system, Annu. Rev. Neurosci., 2005, 28, 223–250

    Article  PubMed  CAS  Google Scholar 

  19. Nakano I., Kornblum H.I., Brain tumor stem cells, Pediatr. Res., 2006, 59, 54R–58R

    Article  PubMed  Google Scholar 

  20. Žarković K., Uchida K., Kolenc D., Hlupić LJ., Žarković N, Tissue distribution of lipid peroxidation product acrolein in human colon carcinogenesis, Free Rad. Res., 2006, 40, 543–552

    Article  Google Scholar 

  21. Schlag G., Žarković K., Redl H., Žarković N., Waeg G., Brain damage secondary to haemorrhagic shock in baboons, In: Schlag G., Redl H., Traber D. L. (eds) Shock, Sepsis and Organ Failure, 5th Wiggers Bernard Conference 1996, Springer-Verlag, Heidelberg, 1997, 3–17

    Google Scholar 

  22. Chaundhry I. H., O’Donovan D. G., Brenchley P. E. et al., Vascular endothelial growth factor expression correlates with tumor grade and vascularity in gliomas, Histopathology, 2001, 39, 389–394

    Google Scholar 

  23. Beier D., Hau P., Proescholdt M. et al., CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles, Cancer Res., 2007, 67, 4010–4015

    Article  PubMed  CAS  Google Scholar 

  24. Liu G., Yuan X., Zeng Z., Tunici P., Ng H., Abdulkadir I.R., et al., Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma, Mol. Cancer, 2006, 5, 67

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danijela Kolenc.

About this article

Cite this article

Kolenc, D., Jakovčević, A., Macan, M. et al. The co-expression of 4-hydroxynonenal and prominin-1 in glioblastomas. Translat.Neurosci. 2, 163–167 (2011). https://doi.org/10.2478/s13380-011-0012-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-011-0012-7

Keywords

Navigation