Skip to main content
Log in

Elastic Properties of GaN and AlN Films Formed on SiC/Si Hybrid Substrate, a Porous Basis

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The nanoindentation method was used to study the elastic properties of gallium nitride and aluminum nitride films grown on nanoscale silicon carbide on silicon (SiC/Si), a new type of substrate. The values of the Young’s modulus of epitaxial films of such wide-gap semiconductors as GaN and AlN, grown on substrates SiC/Si. were determined for the first time. It was experimentally established using the nanoindentation method that the Young’s modulus of the GaN epitaxial layer on SiC/Si is 265 GPa, and that of the AlN film is 223 GPa. Using atomic force microscopy and spectral ellipsometry, the structural characteristics of gallium nitride and aluminum nitride films have been studied. The thicknesses of the films and the roughness of their surface are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. A. Kukushkin and A. V. Osipov, “New method for growing silicon carbide on silicon by solid-phase epitaxy: model and experiment,” Phys. Solid State (Engl. Transl.) 50 (7), 1238 (2008).

  2. S. A. Kukushkin and A. V. Osipov, “Thin-film heteroepitaxy by the formation of the dilatation dipole ensemble,” Dokl. Phys. 57 (5), 217–220 (2012).

    Article  ADS  Google Scholar 

  3. S. A. Kukushkin and A. V. Osipov, “A new mechanism of elastic energy relaxation in heteroepitaxy of monocrystalline films: interaction of point defects and dilatation dipoles,” Mech. Solids  48 (2), 216–227 (2013).

    Article  ADS  Google Scholar 

  4. G. Ferro, “3C-SiC heteroepitaxial growth on silicon: the quest for holy grail,” Crit. Rev. Solid State Mater. Sci. 40 (1), 56–76 (2015).

    Article  ADS  Google Scholar 

  5. S.A. Kukushkin, A.V. Osipov, A.V. Red’kov, “Separation of III–N/SiC epitaxial heterostructure from a Si substrate and their transfer to other substrate types,” Semiconductors 51 (3), 396–401 (2017).

    Article  ADS  Google Scholar 

  6. V.N. Bessolov, et al., “Effect of the Nand p-Type Si (100) substrates with a SiC buffer layer on the growth mechanism and structure of epitaxial layers of semipolar AlN and GaN,” Phys. Solid State 57 (10), 1966–1971 (2015).

    Article  ADS  Google Scholar 

  7. S. A. Kukushkin, A. M. Mizerov, A. S. Grashchenko, et al., “Photoelectric properties of GaN layers grown by plasma-assisted molecular-beam epitaxy on Si(111) substrates and SiC/Si(111) epitaxial layers,” Semiconductors 53 (2), 180–187 (2019).

    Article  ADS  Google Scholar 

  8. O. N. Sergeeva, et al. “New semipolar aluminum nitride thin films: growth mechanisms, structure, dielectric and pyroelectric properties,” Ferroelectrics 544 (1), 33–37 (2019).

    Article  Google Scholar 

  9. Yu. I. Golovin, S. N. Dub, V. I. Ivolgin, et al., “Kinetic features of the deformation of solids in nano-and microscopic volumes,” Phys. Solid State 47 (6), 995–1007 (2005).

    Article  ADS  Google Scholar 

  10. A. C. Fischer-Cripps, Nanoindentation (Springer, Heidelberg, 2011).

    Book  Google Scholar 

  11. A. S. Grashchenko, S. A. Kukushkin, and A.V. Osipov, “Nanoindentation and deformation properties of nanoscale silicon carbide films on silicon substrate,” Tech. Phys. Lett. 40 (12), 1114–1116 (2014).

    Article  ADS  Google Scholar 

  12. A. S. Grashchenko, S. A. Kukushkin, and A.V. Osipov, “Microhardness study of two-layer nanostructures by a nanoindentation method,” Mater. Phys. Mech. 24 (1), 35–40 (2015).

    Google Scholar 

  13. A.S. Grashchenko, S.A. Kukushkin, A.V. Osipov and A.V. Red’kov, “Investigation of the physicomechanical characteristics of nanoscale films by nanoindentation,” Mech. Solids. 53 (5), 481–488 (2018).

    Article  ADS  Google Scholar 

  14. Sh. Sh. Sharofidinov, S. A. Kukushkin, A. V. Red’kov, et al., “Growing III–V semiconductor heterostructures on SiC/Si substrates,” Tech. Phys. Lett. 45, 711–713 (2019).

    Article  ADS  Google Scholar 

  15. H. Hertz, “Hertzian model reine,” Angew. Math.92, 156–171 (1881).

    Google Scholar 

  16. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 7 (6), 1564–1583 (1992).

    Article  ADS  Google Scholar 

  17. M.F. Doerner and W. D. Nix, “a method for interpreting the data from depth-sensing indentation instruments,” J. Mater. Res. 1 (4), 601–609 (1986).

    Article  ADS  Google Scholar 

  18. A. S. Grashchenko, et al., “Nanoindentation of GaN/SiC thin films on silicon substrate,” J. Phys. Chem. Solids.102, 151–156 (2017).

    Article  ADS  Google Scholar 

  19. S. A. Kukushkin, et al., “The mechanism of growth of GaN films by the HVPE method on SiC synthesized by the substitution of atoms on porous Si substrates,” ECS J. Solid State Sci. Technol. 7 (9), 480–486 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

A. S. Grashchenko performed this work as part of the RSF project no. 19-72-30004. S. A. Kukushkin thanks the grant of the Ministry of Education and Science of the Russian Federation no. 16.2811.2017/4.6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Grashchenko.

Additional information

Translated by I.K. Katuev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grashchenko, A.S., Kukushkin, S.A. & Osipov, A.V. Elastic Properties of GaN and AlN Films Formed on SiC/Si Hybrid Substrate, a Porous Basis. Mech. Solids 55, 157–161 (2020). https://doi.org/10.3103/S0025654420020107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654420020107

Keywords:

Navigation