Skip to main content
Log in

Influence of Carbon Additives on Mechanical Characteristics of an Epoxy Binder

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract—

In the present article, we argue a choice of a modifier (filler) for an epoxy binder, namely, carbon nanotubes. The solid-state epoxy adhesive obtained by modification is a 3-phase nanocomposite, where the matrix is epoxy resin, the filler is nanotubes, and the contact layer is the domain of the epoxy resin, molecules of which have been undergone conformation. Next, the effective deformation characteristics of such an epoxy adhesive have been determined using experimental and theoretical methods. We claim that the asymptotic averaging method, which is only one with rigorous mathematical justification, gives results being in a good agreement with experimental ones (discrepancy of ~3.4%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. A. Andrievskii, “Nanomaterials: concept and modern problems,” Ros. Khim. Zh. 46 (5), 50–56 (2002).

    Google Scholar 

  2. D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites,” Appl. Phys. Lett. 76, 2868–2870 (2000).

    Article  ADS  Google Scholar 

  3. M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, et al., “Carbon nanotubes composites for thermal management,” Appl. Phys. Lett. 80, 2767 (2002).

    Article  ADS  Google Scholar 

  4. M. Cadek, J. N. Coleman, V. Barron, et al., “Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites,” Appl. Phys. Lett. 81, 5123–5125 (2002).

    Article  ADS  Google Scholar 

  5. R. Andrews, D. Jacques, M. Minot, and T. Rantell, “Fabrication of carbon multiwall nanotube/polymer composites by shear mixing,” Macromol. Mater. Eng. 287, 395–403 (2002).

    Article  Google Scholar 

  6. G. Mittal, V. Dhand, K.Y.Rhee, et al., “A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites,” J. Industrial Eng. Chem. 21, 11–25 (2015).

    Article  Google Scholar 

  7. V. D. Vermel, S. A. Titov, Yu. V. Kornev, et al., “Nanomodified adhesive composition for aeronautical structures based on polymer composite materials,” in Collection of Articles“The results of basic research in applied problems of the aircraft industry”, Ed. by S. L. Chernyshev (Nauka, Moscow, 2016), pp. 488–497.

    Google Scholar 

  8. Farzana Hussain, Mehdi Hojjati, Masami Okamoto and Russell E. Gorga, “Review article: polymermatrix nanocomposites, processing, manufacturing, and application,” J. Compos. Mater. 40, 1511 (2006).

    Article  Google Scholar 

  9. Yu. G. Yanovsky, O. B. Yumashev, Y. V. Kornev, et al., “Some prospects for the use of carbon nanotubes as functional additives in elastomer composites,” Int. J. Nanomech. Sci. Technol. 2 (3), 185–203 (2011).

    Article  Google Scholar 

  10. Y. V. Kornev, Yu. G. Yanovskiy, O. V. Boiko, et al., “The effect of carbon nanotubes on the properties of elastomeric materials filled with the mineral shungite,” Int. Polymer Sci. Technol. 40 (2), 29–32 (2013).

    Article  Google Scholar 

  11. Yu. G. Yanovsky, F. V. Grigoryev, E. A. Nikitina, et al., “Nanomechanical properties of polymer composite nanoclusters,” Phys. Mesomech. 11 (5–6), 247–259 (2008).

    Article  Google Scholar 

  12. C. Anthony, Fisher-Cripps Nanoindentation (Springer-Verlag, New York, 2002).

    Google Scholar 

  13. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 7 (6), 1564–1583 (1992).

    Article  ADS  Google Scholar 

  14. Yu. I. Golovin, “Nanoindentation and mechanical properties of solids in submicrovolumes, thin nearsurface layers and films: A Review,” Phys. Solid State 50 (12), 2205–2236 (2008).

    Article  ADS  Google Scholar 

  15. D. Tranchida, S. Piccarolo, J. Loos, and A. Alexeev, “Mechanical characterization of polymers on a nanometer scale through nanoindentation. A study on pile-up and viscoelasticity,” Macromol. 40 (4), 1259–1267 (2007).

    Article  ADS  Google Scholar 

  16. D. Tranchida, S. Piccarolo, J. Loos, and A. Alexeev, “Accurately evaluating Young’s modulus of polymers through nanoindentations: A phenomenological correction factor to the Oliver and Pharr procedure,” Appl. Phys. Lett. 89 (17), 171905 (2006).

    Article  ADS  Google Scholar 

  17. M. L. Oyen and R. F. Cook, “Load-displacement behavior during sharp indentation of viscous-elasticplastic materials,” J. Mater. Res. 18 (1), 139–150 (2003).

    Article  ADS  Google Scholar 

  18. N. Punich, Sun Yong, “Improved method to determine the hardness and elastic moduli using nanoindentation, ” KMITL Sci. J. 5 (2), 483–492 (2005).

    Google Scholar 

  19. V. D. Vermel, S. A. Titov, Y. V. Kornev, et al., “Nanomodified adhesive composition for aeronautical structures based on polymer composite material,” American J. Appl. Sci. 13 (3), 267–275 (2016).

    Article  Google Scholar 

  20. I. V. Dolbin, G. V. Kozlov, Yu. N. Karnet, and A. N. Vlasov, “The mechanism of interphase regions growth in nanocomposites polymer/carbon nanotubes,” Compos.: Mech. Comput. Appl. Int. J. 9 (1), 213–220 (2019).

    Google Scholar 

  21. F. Family, “Fractal dimension and grand universality of critical phenomena,” J. Stat. Phys. 36 (5/6), 881–896 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  22. V. N. Shogenov and G. V. Kozlov, Fractal clusters in physical chemistry of polymers (Poligrafservis i T, Nalchik, 2002) [in Russian].

    Google Scholar 

  23. G. V. Kozlov and I. V. Dolbin, “The simulation of carbon nanotubes as macromolecular coils: interfacial adhesion,” Mater. Phys. Mech. 32 (2), 103–107 (2017).

    Google Scholar 

  24. R. Rammal and G. Toulouse, “Random walks on fractal structures and percolation clusters,” J. Phys. Lett. 44 (1), L13–L22 (1983).

    Article  Google Scholar 

  25. T. A. Witten, M. Rubinstein, and R. H. Colby, “Reinforcement of rubber by fractal aggregates,” J. Phys. II France. 3 (3), 367–383 (1993).

    Article  Google Scholar 

  26. D. W. Schaefer and R. S. Justice, “How are nanocomposites?” Macromolecules 40 (24), 8501–8517 (2007).

    Article  ADS  Google Scholar 

  27. M. Moniruzzaman and K. I. Winey, “Polymer nanocomposites containing carbon nanotubes,” Macromolecules 39 (16), 5194–5205 (2006).

    Article  ADS  Google Scholar 

  28. M. Cadek, J. N. Coleman, K. P. Ryan, et al., “Reinforcement of polymers with carbon nanotubes: the role of nanotube surface area,” Nano Lett. 4 (2), 353–356 (2004).

    Article  ADS  Google Scholar 

  29. J. N. Coleman, M. Cadek, K. P. Ryan, et al., “Reinforcement of polymers with carbon nanotubes. The role of an ordered polymer interfacial region. Experiment and modeling,” Polymer 47 (23), 8556–8561 (2006).

    Article  Google Scholar 

  30. L. B. Atlukhanova, Yu. N. Karnet, and G. V. Kozlov, “The modulus of elasticity of polymer matrix for nanocomposites polyurethane/carbon nanotube,” Mekh. Kompozit. Mater. Konstr. 24 (4), 634–643 (2018).

    Google Scholar 

  31. R. M. Christensen, Introduction to Mechanics of Composite Materials (Wiley, New York, 1979).

  32. R. M. Christensen and K. H. Lo, “Solutions for effective shear properties in three phase sphere and cylinder models,” J. Mech. Phys. Solids 27, 315–330 (1979).

    Article  ADS  Google Scholar 

  33. N. S. Bakhvalov and G. P. Panasenko, Homogenization of Processes in Periodic Media (Nauka, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  34. D. B. Volkov-Bogorodskij, “Radial multipliers method in mechanics of inhomogeneous media with multi-layered inclusions,” Mekh. Kompozit. Mater. Konstr. 22 (1), 19–39 (2016).

    Google Scholar 

Download references

Funding

This study was performed as a part of a state assignment, registration number AAAA-A19-119012290177-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Vlasov.

Additional information

Translated by A. A. Borimova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasov, A.N., Volkov-Bogorodskii, D.B. & Kornev, Y.V. Influence of Carbon Additives on Mechanical Characteristics of an Epoxy Binder. Mech. Solids 55, 377–386 (2020). https://doi.org/10.3103/S0025654420030176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654420030176

Keywords

Navigation