Skip to main content
Log in

Strengthening the Intersublattice Exchange Interaction in R(Fe,Ti)\({}_{12}\)N (R = Ho and Er) Nitrides

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The field dependences of the magnetization of nitrogen-containing compounds R(Fe,Ti)\({}_{12}\)N (R = Ho and Er) are analyzed. It was found that the initial HoFe\({}_{11}\)Ti sample at \(T=4.2\) K exhibits the eaxy-axis anisotropy; however, as a result of nitriding, the anisotropy type changes to the easy cone of magnetization. As in the original samples of HoFe\({}_{11}\)Ti and ErFe\({}_{11}\)Ti, in HoFe\({}_{11}\)TiN and ErFe\({}_{11}\)TiN nitrides the cascade of spin-reorientation phase transitions is observed which is induced by external magnetic field. In the framework of the molecular field theory, the effect of nitriding on the interlattice exchange interactions is estimated. It is established that the molecular field that acts from the iron sublattice on rare-earth ions (holmium and erbium) is enhanced. The effect of nitriding and hydrogenation on the intersublattice exchange is compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. I. S. Tereshina, N. V. Kostyuchenko, E. A. Tereshina-Chitrova, et al., Sci. Rep. 8, 3595 (2018).

    Article  ADS  Google Scholar 

  2. W. Körner, G. Krugel, and Ch. Elsässer, Sci. Rep. 6, 24686 (2016).

    Article  ADS  Google Scholar 

  3. Y. Hirayama, Y. Takahashi, S. Hirosawa, and K. Hono, Scr. Mater. 138, 62 (2017).

    Article  Google Scholar 

  4. A. M. Gabay, R. Cabassi, S. Fabbrici, et al., J. Alloys Compd. 683, 271 (2016).

    Article  Google Scholar 

  5. V. Yu. Bodriakov, T. I. Ivanova, S. A. Nikitin, and I. S. Tereshina, J. Alloys Compd. 259, 265 (1997).

    Article  Google Scholar 

  6. W. Suski, ‘‘The ThMn\({}_{12}\)-Type compounds of rare earths and actinides: Structure, magnetic and related properties,’’ in Handbook on the Physics and Chemistry of Rare Earths, Ed. by K. A. Gschneidner and L. Eyring (Elsevier, Amsterdam, 1996), Vol. 22, p. 143.

  7. S. A. Nikitin, I. S. Tereshina, N. Yu. Pankratov, and Yu. V. Skourski, Phys. Rev. B 63, 134420 (2001).

    Article  ADS  Google Scholar 

  8. S. A. Nikitin, I. S. Tereshina, V. N. Verbetsky, et al., J. Alloys Compd. 322, 42 (2001).

    Article  Google Scholar 

  9. H. Fujii and H. Sun, ’’Interstitial modified intermetallics of rare earth 3d elements,’’ in Handbook of Magnetic Materials, Ed. by K. H. J. Buschow (North-Holland, Amsterdam, 1995), Vol. 9, p. 304.

    Google Scholar 

  10. Y. Harashima, K. Terakura, H. Kino, et al., Phys. Rev. B 92, 184426 (2015).

    Article  ADS  Google Scholar 

  11. X. Zhang, B. Cheng, and Y. Yang, Appl. Phys. Lett. 77, 4022 (2000).

    Article  ADS  Google Scholar 

  12. S. A. Nikitin and I. S. Tereshina, Phys. Solid State 45, 1944 (2003).

    Article  ADS  Google Scholar 

  13. E. A. Tereshina and A. V. Andreev, Intermetallics 18, 1205 (2010).

    Article  Google Scholar 

  14. N. H. Duc, ‘‘Intersublattice exchange coupling in the lanthanide-transition metal intermetallics,’’ in Handbook on Physics and Chemistry of Rare Earths, Ed. by K. A. Gschneidner and L. Eyring (Elsevier, Amsterdam, 1997), Vol. 24, p. 177.

    Google Scholar 

  15. S. Nikitin, I. Tereshina, E. Tereshina, et al., J. Alloys Compd. 451, 477 (2008).

    Article  Google Scholar 

  16. E. A. Tereshina, A. V. Andreev, J. Kamarad, and H. Drulis, J. Alloys Compd. 492, 1 (2010).

    Article  Google Scholar 

  17. J. Yang, Sh. Dong, W. Mao, et al., Phys. B (Amsterdam, Neth.) 205, 341 (1995).

  18. E. Tereshina, I. Telegina, T. Palewski, et al., J. Alloys Compd. 404406, 208 (2005).

    Article  Google Scholar 

  19. I. S. Tereshina, S. A. Nikitin, N. Yu. Pankratov, et al., J. Magn. Magn. Mater. 231, 213 (2001).

    Article  ADS  Google Scholar 

  20. I. S. Tereshina, P. Gaczynski, V. S. Rusakov, et al., J. Phys.: Condens Matter 13, 8161 (2001).

    ADS  Google Scholar 

  21. S. A. Nikitin, I. S. Tereshina, V. N. Verbetsky, and A. A. Salamova, J. Alloys Compd. 316, 46 (2001).

    Article  Google Scholar 

  22. Y. Skourski, J. Bartolomé, M. D. Kuz’min, et al., J. Low Temp. Phys. 170, 307 (2013).

    Article  ADS  Google Scholar 

  23. N. V. Kostyuchenko, A. K. Zvezdin, E. A. Tereshina, et al., Phys. Rev. B 92, 104423 (2015).

    Article  ADS  Google Scholar 

  24. I. A. Pelevin, ‘‘The effect of interstitial elements on the structure and magnetic properties of rare earth compounds with a high iron content,’’ Cand. Sci. (Phys.-Math.) Dissertation (Moscow, 2017).

  25. J. P. Liu, F. R. de Boer, P. F. de Châtel, et al., J. Magn. Magn. Mater. 132, 159 (1994).

    Article  ADS  Google Scholar 

  26. I. S. Tereshina, G. A. Beskorovainaya, N. Y. Pankratov, V. V. Zubenko, I. V. Telegina, V. N. Verbetsky, and A. A. Salamova, Phys. Solid State 45, 104 (2003).

    Article  ADS  Google Scholar 

  27. S. Zherlitsyn, B. Wustmann, T. Herrmannsdtsrfer, and J. Wosnitza, IEEE Trans. Appl. Supercond. 22, 4300603 (2012).

    Article  Google Scholar 

  28. E. A. Tereshina, H. Drulis, Y. Skourski, and I. Tereshina, Phys. Rev. B 87, 214425 (2013).

    Article  ADS  Google Scholar 

  29. I. S. Tereshina, E. A. Tereshina-Chitrova, I. A. Pelevin, et al., J. Low Temp. Phys. 190, 236 (2018).

    Article  ADS  Google Scholar 

  30. E. A. Tereshina, M. D. Kuz’min, Y. Skourski, et al., J. Phys.: Condens. Matter 29, 24LT01(6) (2017).

  31. I. S. Tereshina, L. A. Ivanov, E. A. Tereshina-Chitrova, et al., Intermetallics 112, 106546 (2019).

    Article  Google Scholar 

  32. M. D. Kuz’min, Y. Skourski, K. P. Skokov, and K. H. Müller, Phys. Rev. B 75, 184439 (2007).

    Article  ADS  Google Scholar 

  33. E. A. Tereshina, I. S. Tereshina, M. D. Kuz’min, Y. Skourski, et al., J. Appl. Phys. 111, 093923 (2012).

    Article  ADS  Google Scholar 

  34. N. V. Kostyuchenko, I. A. Pelevin, I. S. Tereshina, et al., in Proceedings of 24th International Workshop on Rare-Earth Magnets and Their Applications (TU Darmstadt, Germany, 2016), p. 275.

  35. C. Piquer, F. Grandjean, O. Isnard, et al., J. Phys.: Condens. Matter 18, 221 (2006).

    ADS  Google Scholar 

  36. N. Yu. Pankratov, S. A. Nikitin, W. Iwasieczko, et al., J. Alloys Compd. 404406, 181 (2005).

    Article  Google Scholar 

  37. E. A. Tereshina, H. Yoshida, A. V. Andreev, et al., J. Phys. Soc. Jpn. 76 (Suppl. A), 82 (2007).

    Article  Google Scholar 

  38. I. S. Tereshina, S. A. Nikitin, W. Suski, et al., J. Alloys Compd. 404–406, 172 (2005).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks I. A. Pelevin and J. Lou for the high-field data on magnetization.

Funding

This work was supported by the Russian Science Foundation (project no. 18-13-00135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Tereshina.

Additional information

Translated by E. Oborin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tereshina, I.S. Strengthening the Intersublattice Exchange Interaction in R(Fe,Ti)\({}_{12}\)N (R = Ho and Er) Nitrides. Moscow Univ. Phys. 75, 237–241 (2020). https://doi.org/10.3103/S0027134920030169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134920030169

Keywords:

Navigation