Skip to main content
Log in

Methane Fluid Discharge Measurements by the Trap Method in Laspi Bay (Black Sea)

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

Measurements of the methane fluid discharge from bottom sediments and daily monitoring of the main hydrophysical parameters near the site of the bubble gas discharge (seeps) in Laspi Bay have been carried out. Fluid flow values varied by an order of magnitude (1.4–74.3 mmol/(m\({}^{2}\) day)) at points separated by a distance of no more than 10 m. It is assumed that denser carbonate deposits at the seepage site can localize gas flows, thus reducing the volume of fluid discharge. It is shown that the specific fluid discharge in Laspi Bay is comparable with the flow from point seeps; the maximum fluid flow is only 3.5 times lower compared to the minimum recorded seep flow. Changes in hydrological parameters above the gas release point are significantly influenced by waves. The maximum change in salinity during measurements was 0.08%o, which indicates that there is no high-rate freshwater submarine discharge, which often accompanies seeps. Episodes of an abrupt decrease in oxygen content with an amplitude of 0.5 mg/L at night, which are not related to changes in water temperature and meteorological conditions, may be caused by the seepage of hydrogen sulfide in the bubble and fluid gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. V. N. Egorov, Yu. G. Artemov, and S. B. Gulin, Methane Seeps in the Black Sea: Environmental and Ecological Role, Ed. by G. G. Polikarpov (EKOSI-Gidrofizika, Sevastopol’, 2011) [in Russian].

    Google Scholar 

  2. T. V. Malakhova et al., Morsk. Gidrofiz. Zh. 36, 186 (2020). https://doi.org/10.22449/0233-7584-2020-2-186-201

    Article  Google Scholar 

  3. A. L. Bryukhanov, M. A. Vlasova, A. A. Perevalova, et al., Microbiology 87, 372 (2018). https://doi.org/10.7868/S0026365618030060

    Article  Google Scholar 

  4. T. V. Malakhova et al., Microbiology 84, 838 (2015).

    Article  Google Scholar 

  5. Yu. G. Artemov, D. B. Evtushenko, and I. N. Moseichenko, Sist. Kontr. Okruzh. Sredy, No. 11, 69 (2018).

    Google Scholar 

  6. I. Yu. Tarnovetskii, A. Yu. Merkel, T. A. Kanapatskiy, et al., FEMS Microbiol. Lett. 365 (21), fny235 (2018). https://doi.org/10.1093/femsle/fny235

    Article  Google Scholar 

  7. N. V. Pimenov, A. Yu. Merkel, I. Yu. Tarnovetskii, et al., Microbiology 87, 681 (2018).

    Article  Google Scholar 

  8. A. A. Budnikov, T. V. Malakhova, I. N. Ivanova, et al., Mosc. Univ. Phys. Bull. 74, 690 (2019).

    Article  ADS  Google Scholar 

  9. T. V. Malakhova et al., Ekol. Bezpeka Priberezh. Shel’f. Zon Kompl. Vikorist. Resursiv Shel’fu 26 (1), 217 (2012).

    Google Scholar 

  10. N. V. Shik, Geol. Polez. Iskop. Mirov. Okeana, No. 1, 135 (2006).

    Google Scholar 

  11. V. Lysenko and N. V. Shik, Prostranstvo Vremya 2 (12), 151 (2013).

    Google Scholar 

  12. A. M. Bol’shakov and A. V. Egorov, Okeanologiya 27, 861 (1987).

    Google Scholar 

  13. M. E. Torres, J. McManus, D. E. Hammond, et al., Earth Planet. Sci. Lett. 201, 525 (2002).

    Article  ADS  Google Scholar 

  14. V. G. Kravchenko, GPIMO, No. 1, 106 (2008).

    Google Scholar 

  15. A. A. Budnikov, I. N. Ivanova, T. V. Malakhova, et al., Uch. Zap. Fiz. Fak. Mosk. Univ., No. 3, 1930902 (2019). http://uzmu.phys.msu.ru/abstract/2019/3/1930902.

  16. T. V. Malakhova, ‘‘Microbial processes of the methane cycle and its balance in the Sevastopol water area (Black Sea),’’ Extended Abstract of Cand. Sci. (Biol.) Dissertation (2014).

  17. N. Riedinger, B. Brunner, Y.-S. Lin, et al., Chem. Geol. 274, 29 (2010).

    Article  ADS  Google Scholar 

  18. D. Amouroux, G. Roberts, S. Rapsomanikis, and M. Andreae, Estuar. Coast. Shelf Sci. 54, 575 (2002).

    Article  ADS  Google Scholar 

  19. I. I. Rusanov A. Yu. Lein, N. V. Pimenov, S. K. Yusu- pov, and M. V. Ivanov, Microbiology 71, 479 (2002).

    Article  Google Scholar 

  20. W. S. Reeburgh, Chem. Rev. 107, 486 (2007).

    Article  Google Scholar 

  21. J. D. Kessler, W. S. Reeburgh, J. Southon, et al., Earth Planet. Sci. Lett. 243, 366 (2006).

    Article  ADS  Google Scholar 

  22. P. Linke, S. Sommer, L. Rovelli, et al., Marine Geol. 272, 209 (2010).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank A.E. Shipilov for their comprehensive assistance in preparing the article.

Funding

This work was supported by State Task Molismological and Biogeochemical Bases of the Homeostasis of Marine Ecosystems, project no. AAAA18-118020890090-2, Russian Foundation for Basic Research, project nos. 18-45-920057 r_a, AAAA-A18-118082090056-4.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. V. Malakhova, A. A. Budnikov, I. N. Ivanova or A. I. Murashova.

Additional information

Translated by O. Pismenov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malakhova, T.V., Budnikov, A.A., Ivanova, I.N. et al. Methane Fluid Discharge Measurements by the Trap Method in Laspi Bay (Black Sea). Moscow Univ. Phys. 75, 705–711 (2020). https://doi.org/10.3103/S0027134920060132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134920060132

Keywords:

Navigation