Skip to main content
Log in

SEF1 and VMA1 Genes Regulate Riboflavin Biosynthesis in the Flavinogenic Yeast Candida Famata

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract—Riboflavin (vitamin B2) is an important component of the diet of living organisms since it is a precursor of flavin coenzymes FMN (flavin mononucleotide) and FAD (flavin adenine dinucleotide) involved in numerous enzymatic reactions. It is known that flavinogenic yeast C. famata is able to perform riboflavin overproduction under conditions of iron deficiency, but the regulation of this process remains unknown. It was shown that the deletion of the SEF1 gene (encoding transcription activator) blocked the ability for riboflavin overproduction under conditions of iron deficiency. It was determined that SEF1 promoters of other flavinogenic yeasts (Candida albicans and Candida tropicalis) fused with SEF1 ORF of C. famata can restore the overproduction of riboflavin in the sef1Δ mutant. The disruption of the VMA1 gene (encoding the vacuolar ATPase subunit A) led to overproduction of riboflavin in C. famata in iron complete medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Abbas, C.A. and Sibirny, A.A., Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers, Microbiol. Mol. Biol. Rev., 2011, vol. 75, no. 2, pp. 321–360. https://doi.org/10.1128/MMBR.00030-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lim, S.H., Choi, J.S., and Park, E.Y., Microbial production of riboflavin using riboflavin overproducers, Ashbya gossypii, Bacillus subtilis, and Candida famate: an overview, Biotechnol. Bioproc. Eng., 2001, vol. 6, pp. 75–88. https://doi.org/10.1007/bf02931951

    Article  CAS  Google Scholar 

  3. Stahmann, K.-P., Revuelta, J.L., and Seulberger, H., Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production, Appl. Microbiol. Biotechnol., 2000, vol. 53, pp. 509–516. https://doi.org/10.1007/s002530051649

    Article  CAS  PubMed  Google Scholar 

  4. Vandamme, E.J., Production of vitamins, coenzymes and related biochemicals by biotechnological processes, J. Chem. Technol. Biotechnol., 1992, vol. 53, pp. 313–327. https://doi.org/10.1002/jctb.280530402

    Article  CAS  PubMed  Google Scholar 

  5. Kato, T. and, Park E.Y., Riboflavin production by Ashbya gossypii,Biotechnol. Lett., 2012, vol. 34, pp. 611–618. https://doi.org/10.1007/s10529-011-0833-z

    Article  CAS  PubMed  Google Scholar 

  6. Schwechheimer, S.K., Park, E.Y., Revuelta, J.L., Becker, J., and Wittmann, C., Biotechnology of riboflavin, Appl. Microbiol. Biotechnol., 2016, vol. 100, no. 5, pp. 2107–2119. https://doi.org/10.1007/s00253-015-7256-z

    Article  CAS  PubMed  Google Scholar 

  7. Burgess C.M., Smid E.J. and van Sinderen D. Bacterial vitamin B2, B11 and B12 overproduction: an overview, Int. J. Food Microbiol., 2009, vol. 133, nos. 1–2, pp. 1–7. https://doi.org/10.1016/j.ijfoodmicro.2009.04.012

    Article  CAS  PubMed  Google Scholar 

  8. Chen C., Noble S.M. Post-transcriptional regulation of the Sef1 transcription factor controls the virulence of Candida albicans in its mammalian host, PLoS Pathog., 2012, vol. 8, no. 11, e1002956. https://doi.org/10.1371/journal.ppat.1002956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dmytruk, K.V., Yatsyshyn, V.Y., Sybirna, N.O., Fedorovych, D.V., and Sibirny, A.A., Metabolic engineering and classic selection of the yeast Candida famata (Candida flareri) for construction of strains with enhanced riboflavin production, Metabol. Engin., 2011, vol. 13, no. 1, pp. 82–88. https://doi.org/10.1016/j.ymben.2010.10.005

    Article  CAS  Google Scholar 

  10. Dmytruk, K., Lyzak, O., Yatsyshyn, V., Kluz, M., Sibirny, V., Puchalski, C., and Sibirny, A., Construction and fed-batch cultivation of Candida famata with enhanced riboflavin production. J. Biotechnol., 2014, vol. 172, pp. 11–17. https://doi.org/10.1016/j.jbiotec.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  11. Voronovsky, A.Y., Abbas, C.A., Dmytruk, K.V., Ishchuk, O.P., Kshanovska, B.V. Sybirna, K.A., Gaillardin, C., and Sibirny, A.A., Candida famata (Debaryomyces hansenii) DNA sequences containing genes involved in riboflavin synthesis, Yeast, 2004, vol. 21, pp. 1307–1316. https://doi.org/10.1002/yea.1182

    Article  CAS  PubMed  Google Scholar 

  12. Boretsky, Y.R., Pynyaha, Y.V., Boretsky, V.Y., Fedorovych, D.V., Fayura, L.R., Protchenko, O., Philpott, C.C., and Sibirny, A.A., Identification of the genes affecting the regulation of riboflavin synthesis in the flavinogenic yeast Pichia guilliermondii using insertion mutagenesis, FEMS Yeast Res., 2011, vol. 11, pp. 307–314. https://doi.org/10.1111/j.1567-1364.2011.00720.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Forster C., Santos M. A., Ruffert, S., Kramer R., and Revuelta J.L., Physiological consequence of disruption of the VMA1 gene in the riboflavin overproducer Ashbya gossypii,J. Biol. Chem., 1999, vol. 274, pp. 9442–9448. https://doi.org/10.1074/jbc.274.14.9442

    Article  CAS  PubMed  Google Scholar 

  14. Voronovsky A.A., Abbas C.A., Fayura L.R., Kshanovska B.V., Dmytruk K.V., Sybirna, K.A., and Sibirny A.A. Development of a transformation system for the flavinogenic yeast Candida famata,FEMS Yeast Res., 2002, vol. 2, pp. 381–388. https://doi.org/10.1016/S1567-1356(02)00112-5

    Article  CAS  PubMed  Google Scholar 

  15. Sambrook J., Fritsh E.F., and Maniatis T., Molecular Cloning: A Laboratory Manual, 2nd ed., New York: Cold Spring Harbor Laboratory Press, 1989.

    Google Scholar 

  16. Millerioux, Y., Clastre, M., Simkin, A.J., Courdavault, V., Marais, E., Sibirny, A.A., Noël, T., Crèche, J., Giglioli-Guivarc’h, N., and Papon, N., Drug-resistant cassettes for the efficient transformation of Candida guilliermondii wild-type strains, FEMS Yeast Res., 2001, vol. 11, no. 6, pp. 457–463. https://doi.org/10.1111/j.1567-1364.2011.00731.x

    Article  CAS  Google Scholar 

  17. Dmytruk K.V., Voronovsky A.Y., and Sibirny A.A. Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments, Curr. Genet., 2006, vol. 50, pp. 183–191. https://doi.org/10.1007/s00294-006-0083-0

    Article  CAS  PubMed  Google Scholar 

  18. Dmytruk, K.V., Ruchala, J., Fedorovych, D.V., Ostapiv, R.D., and Sibirny, A.A., Modulation of the purine pathway for riboflavin production in flavinogenic recombinant strain of the yeast Cand. famata,Biotechnol. J., 2020, vol. 22. https://doi.org/10.1002/biot.201900468

  19. Patcharanan, A., Riboflavin production by Candida tropicalis isolated from seawater, Sci. Res. Essays, 2013, vol. 8, no. 1, pp. 43–47. https://doi.org/10.5897/SRE12.603

    Article  CAS  Google Scholar 

  20. Mateos, L., Jimenez, A., and Revuelta, J.L., Purine biosynthesis, riboflavin production, and trophic–phase span are controlled by a Myb–related transcription factor in the fungus Ashbya gossypii,Appl. Environ. Microbiol., 2006, vol. 72, pp. 5052–5060. https://doi.org/10.1128/AEM.00424-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was partially supported by a grant of the Polish National Science Center (NCN) Opus UMO-2018/29/ B/NZ1/01-497 and the National Academy of Sciences of Ukraine (grant 36-19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sibirny.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by V. Mittova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreieva, Y., Lyzak, O., Liu, W. et al. SEF1 and VMA1 Genes Regulate Riboflavin Biosynthesis in the Flavinogenic Yeast Candida Famata . Cytol. Genet. 54, 379–385 (2020). https://doi.org/10.3103/S0095452720050023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452720050023

Navigation