Skip to main content
Log in

Identification of Genes for Resistance to Yellow Rust of Asian Origin in Winter Wheat Cultivars and Lines

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Yellow rust caused by the fungus Puccinia striiformis West. (synonym P. glumarum Erikss. et Henn.) is a dangerous factor contributing to significantly lower yields of common wheat grain and its poor quality. Recent studies indicate that highly virulent strains of yellow rust expand their range from the near-Himalayan region and replace less pathogenic European races of P. striiformis, posing a real danger to the agricultural sector in Europe, including Ukraine, since most wheat varieties resistant to local races of P. striiformis are susceptible to these new highly virulent strains. In this regard, we assessed resistance to the yellow rust pathogen in 558 cultivars and lines of winter common wheat, in particular, 171 in the infection background and 387 in the natural background. Winter wheat samples in the collection variety trials originated from 17 countries, although most of them were of Ukrainian breeding. Screening of winter wheat cultivars and lines for yellow rust resistance showed that only 19 (or 3%) samples exhibited appropriate resistance. Analysis of the yellow rust-resistant wheat specimens using molecular markers for the Yr10 and Yr36 genes did not reveal samples containing either of these genes. At the same time, screening using molecular markers Xbarc8, S23M41-310, S23M41-140, and dp269 indicated the presence of DNA fragments of various lengths associated with resistance alleles of the genes Yr5, Yr15, and YrSp in four cultivars of Ukrainian breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Ali, S., Shah, S.J.A., Khalil, I.H., et al., Partial resistance to yellow rust in introduced winter wheat germplasm at the north of Pakistan, Aust. J. Crop Sci., 2009, vol. 3, pp. 37–43.

    Google Scholar 

  2. Ali, S., Rodriguez-Algaba, J., Thach, T., et al., Yellow rust epidemics worldwide were caused by pathogen races from divergent genetic lineages, Front. Plant Sci., 2017, vol. 20, no. 8, p. 1057. https://doi.org/10.3389/fpls.2017.01057

    Article  Google Scholar 

  3. Afzal, S.N., Ul-Haque, M.I. and Ahmedani, M.S., Assessment of yield losses caused by Puccinia striiformis triggering stripe rust in the most common wheat varieties, Pak. J. Bot., 2007, vol. 39, no. 6, pp. 2127–2134.

    Google Scholar 

  4. Babaiants, L.T. and Chusovitina, N.M., Soft winter wheat variety resistance to yellow rust pathogen Puccinia striiformis f. sp. tritici in the South of Ukraine, Biul. Inst. Zern. Hospod., 2011, vol. 40, pp. 94–97.

    Google Scholar 

  5. Bansal, U.K., Forrest, K.L., Hayden, M.J., et al., Characterization of a new stripe rust resistance gene Yr47 and its genetic association with the leaf rust resistance gene Lr52, Theor. Appl. Genet., 2011, vol. 122, no. 8, pp. 1461–1466. https://doi.org/10.1007/s00122-011-1545-4

    Article  CAS  PubMed  Google Scholar 

  6. Bariana, H.S., Parry, N., Barclay, I.R., et al., Identification and characterization of stripe rust resistance gene Yr34 in common wheat, Theor. Appl. Genet., 2006, vol. 112, pp. 1143–1148. https://doi.org/10.1007/s00122-006-0216-3

    Article  CAS  PubMed  Google Scholar 

  7. Liu, B., Xue, X, Cui, S., et al., Cloning and characterization of a wheat beta-1,3-glucanase gene induced by the stripe rust pathogen Puccinia striiformis f. sp. tritici, Mol. Biol. Rep., 2010, vol. 37, no. 2, pp. 1045–1052. https://doi.org/10.1007/s11033-009-9823-9

    Article  CAS  PubMed  Google Scholar 

  8. Liu, L., Wang, M., Zhang, Z., et al., Identification of stripe rust resistance loci in U.S. spring wheat cultivars and breeding lines using genome-wide association mapping and Yr gene markers, Plant Dis., 2020. https://doi.org/10.1094/pdis-11-19-2402-re

  9. Cheng, P. and Chen, X.M., Molecular mapping of a gene for stripe rust resistance in spring wheat cultivar IDO377s, Theor. Appl. Genet., 2010, vol. 121, no. 1, pp. 195–204. https://doi.org/10.1007/s00122-010-1302-0

    Article  CAS  PubMed  Google Scholar 

  10. Dong, Y.L., Yin, C.T., Hulbert, S., et al., Cloning and expression analysis of three secreted protein genes from wheat stripe rust fungus Puccinia striiformis f. sp. tritici, World J. Microbiol. Biotechnol., 2011, vol. 27, no. 5, pp. 1261–1265. https://doi.org/10.1007/s11274-010-0565

    Article  CAS  Google Scholar 

  11. Feng, J.Y., Wang, M.N., Chen, X.M., See, D.R., Zheng, Y.L., Chao, S.M., and Wan, A.M., Molecular mapping of YrSP and its relationship with other genes for stripe rust resistance in wheat chromosome 2BL, Phytopathology, 2015, vol. 105, no. 9, pp. 1206–1213. https://doi.org/10.1094/PHYTO-03-15-0060-R

    Article  CAS  PubMed  Google Scholar 

  12. Herrera-Foessel, S.A., Singh, R.P., Lillemo, M., et al., Lr67/Yr46 confers adult plant resistance to stem rust and powdery mildew in wheat, Theor. Appl. Genet., 2014, vol. 127, no. 4, pp. 781–789. https://doi.org/10.1007/s00122-013-2256-9

    Article  CAS  PubMed  Google Scholar 

  13. Hovmoller, M.S., Walter, S., Bayles, R.A., et al., Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region, Plant Pathol., 2016, vol. 65, no. 3, pp. 402–411. https://doi.org/10.1111/ppa.12433

    Article  Google Scholar 

  14. Li, G.Q., Li, Z.F., Yang, W.Y., et al., Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26, Theor. Appl. Genet., 2006a, vol. 112, no. 8, pp. 1434–1440. https://doi.org/10.1007/s00122-006-0245

    Article  CAS  PubMed  Google Scholar 

  15. Li, Z.F., Zhang, T.C., He, Z.H., et al., Molecular tagging of stripe rust resistance gene YrZH84 in Chinese wheat line Zhou 8425B, Theor. Appl. Genet., 2006b, vol. 112, no. 6, pp. 1098–1103. https://doi.org/10.1007/s00122-006-0211-8

    Article  CAS  PubMed  Google Scholar 

  16. Li, Y., Niu, Y.C., and Chen, X.M., Mapping a stripe rust resistance gene YrC591 in wheat variety C591 with SSR and AFLP markers, Theor. Appl. Genet., 2009, vol. 118, no. 2, pp. 339–346. https://doi.org/10.1007/s00122-008-0903-3

    Article  CAS  PubMed  Google Scholar 

  17. Li, Q., Chen, X.M., Wang, M.N., et al., Yr45, a new wheat gene for stripe rust resistance on the long arm of chromosome 3D, Theor. Appl. Genet., 2011, vol. 122, no. 1, pp. 189–197. https://doi.org/10.1007/s00122-010-1435-1

    Article  CAS  PubMed  Google Scholar 

  18. Lowe, I., Jankuloski, L., Chao, S.M., et al., Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat, Theor. Appl. Genet., 2011, vol. 123, pp. 143–157. https://doi.org/10.1007/s00122-011-1573-0

    Article  PubMed  PubMed Central  Google Scholar 

  19. Luo, P.G., Hu, X.Y., Ren, Z.L., et al., Allelic analysis of stripe rust resistance genes on wheat chromosome 2BS, Genome, 2008, vol. 51, no. 11, pp. 922–927. https://doi.org/10.1139/G08-079

    Article  CAS  PubMed  Google Scholar 

  20. Mert, Z., Nazari, K., Karagöz, E., et al., First incursion of the warrior race of wheat stripe rust (Puccinia striiformis f. sp. tritici) to Turkey in 2014, Plant Dis., 2016, vol. 100, no. 2, pp. 528–528. https://doi.org/10.1094/PDIS-07-15-0827-PDN

    Article  Google Scholar 

  21. Nargan, T.P., Search for sources of resistance to leaf and stem diseases of bread winter wheat for use in breeding, Genet. Resur. Roslyn, 2015, no. 17, pp. 11–20.

  22. Philomin, J., Prakash, S.R., Huerta, E.J., et al., Genome-wide mapping and allelic fingerprinting provide insights into the genetics of resistance to wheat stripe rust in India, Kenya and Mexico, Sci. Rep., 2020, vol. 10, art. 10908.https://doi.org/10.1038/s41598-020-67874-x

  23. Rosewarne, G.M., Herrera-Foessel, S.A., Singh, R.P., et al., Quantitative trait loci of stripe rust resistance in wheat, Theor. Appl. Genet., 2013, vol. 126, no. 10, pp. 2427–2449. https://doi.org/10.1007/s00122-013-2159-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sambrook, J. and David, W.R., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, 2001, vol. 2.

    Google Scholar 

  25. Singh, R., Datta, D., Priyamvada, et al., A diagnostic PCR based assay for stripe rust resistance gene in wheat, Acta Phytopathol. Entomol. Hung., 2009, vol. 44, no. 1, pp. 11–18. https://doi.org/10.1556/aphyt.44.2009.1.2

    Article  CAS  Google Scholar 

  26. Smith, P.H., Hadfield, J., Hart, N.J., et al., STS markers for the wheat yellow rust resistance gene Yr5 suggest a NBS-LRR-type resistance gene cluster, Genome, 2007, vol. 50, no. 3, pp. 259–265. https://doi.org/10.1139/g07-004

    Article  CAS  PubMed  Google Scholar 

  27. Somers, D.J., Isaac, P., and Edwards, K., A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.), Theor. Appl. Genet., 2004, vol. 109, pp. 1105–1114. https://doi.org/10.1007/s00122-004-1740-7

    Article  CAS  PubMed  Google Scholar 

  28. Sui, X.X., Wang, M.N., and Chen, X., Molecular mapping of a stripe rust resistance gene in spring wheat cultivar ‘Zak,’ Phytopathology, 2009, vol. 99, pp. 1209–1215. https://doi.org/10.1094/PHYTO-99-10-1209

    Article  CAS  PubMed  Google Scholar 

  29. Topchii, T. and Morgyn, B., Yellow wheat rust, Propositsiya, 2019, vol. 1, pp. 120–122

    Google Scholar 

  30. Trybel, S.O., Getman, M.V., Strygun, O.O., et al., Metho-dology of Evaluation of Resistance of Wheat to Pests and Pathogens, Kyiv: Kolobig, 2010.

    Google Scholar 

  31. Uauy, C., Brevis, J.C., Chen, X., et al., High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1, Theor. Appl. Genet., 2005, vol. 112, no. 1, pp. 97–105. https://doi.org/10.1007/s00122-005-0109-x

    Article  CAS  PubMed  Google Scholar 

  32. Walter, S., Ali, S., Kemen, E., et al., Molecular markers for tracking the origin and worldwide distribution of invasive strains of Puccinia striiformis, Ecol. Evol., 2016, vol. 6, pp. 2790–2804. https://doi.org/10.1002/ece3.2069/abstract

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang, X., Tang, C., Deng, L., et al., Characterization of a pathogenesis-related traumatic-like protein gene TaPR5 from wheat induced by stripe rust fungus, Physiol. Plant., 2009, vol. 139, no. 1, pp. 27–38. https://doi.org/10.1111/j.13993054.2009.01338.x

    Article  PubMed  Google Scholar 

  34. Weng, D.X., Xu, S.C., Lin, R.M., et al., Microsatellite marker linked with stripe rust resistant gene Yr9 in wheat, Acta Genet. Sin., 2016, vol. 32, pp. 937–941.

    Google Scholar 

  35. Xia, X., Li, Z., Li, G., et al., Stripe rust resistance in Chinese bread wheat cultivars and lines, Dev. Plant Breed., 2007, vol. 12, pp. 77–82.

    Google Scholar 

  36. Xia, N., Zhang, G., Liu, X.Y., et al., Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses, Mol. Biol. Rep., 2010, vol. 37, no. 8, pp. 3703–3712. https://doi.org/10.1007/s11033-010-0023-4

    Article  CAS  PubMed  Google Scholar 

  37. Xie, C.J., Sun, Q., Ni, Z., et al., Chromosomal location of a Triticum dicoccoides-derived powdery mildew resistance gene in common wheat by using microsatellite markers, Theor. Appl. Genet., 2003, vol. 106, pp. 341–345. https://doi.org/10.1007/s00122-002-1022-1

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, Yi, Zhang, G., Xia, N., et al., Cloning and characterization of a bZIP transcription factor gene in wheat and its expression in response to stripe rust pathogen infection and abiotic stresses, Physiol. Mol. Plant Pathol., 2008, vol. 73, nos. 4–5, pp. 88–94. https://doi.org/10.1016/j.pmpp.2009.02.002

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded within the scientific and technical projects of the National Academy of Sciences of Ukraine “Development and Introduction of Molecular Genetic Methods for Detecting Genes for Resistance to Yellow Rust in Wheat” (0116U006101) and “Introduction of Molecular Genetic Markers of Resistance to Highly Virulent Yellow Rust Pathotypes of Asian Origin in the Wheat Breeding Process” (0117U002730).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya. V. Pirko or Ya. B. Blume.

Ethics declarations

The authors declare that they have no conflict of interests. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by K. Lazarev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirko, Y.V., Karelov, A.V., Kozub, N.O. et al. Identification of Genes for Resistance to Yellow Rust of Asian Origin in Winter Wheat Cultivars and Lines. Cytol. Genet. 55, 227–235 (2021). https://doi.org/10.3103/S0095452721030075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452721030075

Keywords:

Navigation