Skip to main content
Log in

Hydrothermal Carbonization of Agricultural Biomass: Characterization of Hydrochar for Energy Production

  • Published:
Solid Fuel Chemistry Aims and scope Submit manuscript

Abstract

This paper shows the results of hydrothermal carbonization of biomass from seven different crops used as biofuel: wheat straw, soybean straw, corn cob, corn stalk, sunflower stalk, walnut shell, and hazelnut shell. The hydrothermal carbonization process was investigated at 200 and 250°C reaction temperatures, a pressure of 8.0 MPa, and 120 minutes of process duration. The obtained dry hydrochar was characterized. The hydrothermal carbonization process increased carbon and decreased oxygen and, to a lesser extent, hydrogen. Higher heating value of hydrochar increased compared to the feedstock. The hydrothermal carbonization process influenced the increase in the share of ash and bulk density. At lower process temperature, a higher mass yield of hydrochar was obtained. The color of the hydrochar correlated with carbon content; lower process temperatures gave brown lignocellulosic color, and higher temperatures resulted in charcoal black. Depending on the raw material, hydrochar was improved in terms of its basic composition and heating value, and it showed to have the potential to be used in coal dust combustion plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Osman, I.-A., Abdelkader, A., Christopher, R.-J., Morgan, K., and Rooney, W.-D., Ind. Eng. Chem. Res., 2017, vol. 56, p. 12119. https://doi.org/10.1021/acs.iecr.7b03478

    Article  CAS  Google Scholar 

  2. Halabi, M.-A., Al-Qattan, A., and Al-Otaibi, A., Renew. Sust. Energy Rev., 2015, vol. 43, p. 269.

    Google Scholar 

  3. Sikkema, R., Proskurina, S., Banja, M., and Vakkilainen, E., Renew. Energy, 2021, vol. 165, p. 758. https://doi.org/10.1016/j.renene.2020.11.047

    Article  Google Scholar 

  4. European Commission, Renewable Energy Directive II (2018/2001/EU). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.328.01.0082.01.ENG&toc=OJ:L:2018:328:TOC. Accessed August 16, 2021.

  5. European Commission, Renewable Energy Directive I (2009/28/EC). https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0028&rid=8. Accessed August 16, 2021.

  6. Renewable Energy Sources in the EU. 2020a. https://ec.europa.eu/eurostat/web/energy/data/shares. Accessed August 16, 2021.

  7. Energy Development Strategy of the Republic of Serbia until 2025 with a Projection until 2030, Official Gazette of the Republic of Serbia, No 101, December 08, 2015. www.pravno-informacioni-sistem.rs/SlGlasnikPortal/eli/rep/sgrs/skupstina/ostalo/2015/101/1/reg. 20 July 2020. Accessed August 20, 2021.

  8. Zekic, V., Rodic, V., and Jovanovic, M., Biomass Bioenergy, 2010, vol. 3, p. 1789. https://doi.org/10.1016/j.biombioe.2010.07.012

    Article  Google Scholar 

  9. Dodic, N.-S., Zekic, N.-V., Rodic, O.-V., Tica, Lj.-N., Dodic, M.-J., and Popov, D.-S., Renew. Sust. Energy Rev., 2012, vol. 16, p. 397. https://doi.org/10.1016/j.rser.2010.11.011

    Article  Google Scholar 

  10. Dodic, N.-S., Zekic, N.-V., Rodic, O.-V., Tica, Lj.-N., Dodic, M.-J., and Popov, D.-S., Renew. Sust. Energy Rev., 2011, vol. 15, p. 1147. https://doi.org/10.1016/j.rser.2010.11.011

    Article  Google Scholar 

  11. Barber, A.-S., Agro. J., 1979, vol. 4, p. 625. https://doi.org/10.2134/agronj1979.00021962007100040025x

    Article  Google Scholar 

  12. Lal, R., J. Soil Water Conser., 2004, vol. 59, no. 6, p. 136A.

    Google Scholar 

  13. Acharjee, T.-C., Coronella, C.-J., and Vasquez, V.-R., Bioresour. Tech., 2011, vol. 102, p. 4849. https://doi.org/10.1016/j.biortech.2011.01.018

    Article  CAS  Google Scholar 

  14. Saddawi, A., Jones, J.-M., Williams, A., and Le Coeur, C., Energy Fuels, 2011, vol. 26, p. 6466. https://doi.org/10.1021/ef2016649

    Article  CAS  Google Scholar 

  15. Baxter, L.-L, Miles, T.-R, Miles, Jr T.-R., Jenkins, B.-M., Milne, T., Dayton, D., Bryers, W.-R., and Oden, L.-L., Fuel Proc. Tech., 1998, vol. 54, p. 47. https://doi.org/10.1016/S0378-3820(97)00060-X

    Article  CAS  Google Scholar 

  16. Agblevor, F. and Besler, S., Energy Fuels, 1996, vol. 10, p. 293. https://doi.org/10.1021/ef950202u

    Article  CAS  Google Scholar 

  17. Lizotte, P., Savoie, P., and Champlan, A., Energies, 2015, vol. 8, p. 4827. https://doi.org/10.3390/en8064827

    Article  Google Scholar 

  18. Pimuchuai, A., Dutta, A., and Basu, P., Energy Fuels, 2010, vol. 24, p. 4638. https://doi.org/10.1021/ef901168f

    Article  CAS  Google Scholar 

  19. Hoekman, K.-S., Borch, A., and Robbins, C., Energy Fuels, 2011, vol. 25, p. 1802. https://doi.org/10.1021/ef101745n

    Article  CAS  Google Scholar 

  20. Prins, M.-J., Ptasinski, J.-K., and Janssen, F.J.J.-G., Energy, 2006, vol. 311, p. 3458. https://doi.org/10.1016/j.energy.2006.03.008

    Article  CAS  Google Scholar 

  21. Li, L., Flora, R.V.-J., and Berge, D.-N., Renew. Energy, 2020, vol. 145, p. 1883. https://doi.org/10.1016/j.renene.2019.07.103

    Article  CAS  Google Scholar 

  22. Ischia, G. and Fiori, L., Waste Biomass Valor., 2021, vol. 12, p. 2797. https://doi.org/10.1007/s12649-020-01255-3

    Article  CAS  Google Scholar 

  23. Saetea, P. and Tippayawong, N., ISRN Chem. Eng., 2013, vol. 6. https://doi.org/10.1155/2013/268947

  24. Benavente, V., Calabuig, E., and Fullana, A., J. Anal. App. Pyrol., 2015, vol. 113, p. 89. https://doi.org/10.1016/j.jaap.2014.11.004

    Article  CAS  Google Scholar 

  25. Dlabaja, T. and Malatak, J., Res. Agr. Eng., 2016, vol. 62, p. 64. https://doi.org/10.17221/34/2014-RAE

    Article  Google Scholar 

  26. Krylova, A.Yu. and Zaitchenko, V.M., Solid Fuel Chem., 2018, vol. 52, no. 2, p. 91. https://doi.org/10.3103/S0361521918020076

    Article  CAS  Google Scholar 

  27. Matsumura, Y., Sasaki, M., Okuda, K., Takami, S., Ohara, S., Umetsu, M., and Adschiri, T., Comb. Sci. Technol., 2007, vol. 178, nos. 1–3, p. 509. https://doi.org/10.1080/00102200500290815

    Article  CAS  Google Scholar 

  28. Zhang, B., Heidari, M., Regmi, B., Salaudeen, S., Arku, P., Thimmannagari, M., and Dutta, A., Energies, 2018, vol. 11, p. 2022. https://doi.org/10.3390/en11082022

    Article  CAS  Google Scholar 

  29. Picone, A., Volpe, M., and Messineo, A., Energies, 2021, vol. 14, p. 2962. https://doi.org/10.3390/en14102962

    Article  CAS  Google Scholar 

  30. Titirici, M.-M. and Antonietti, M., Chem. Soc. Rev., 2010, vol. 39, p. 103. https://doi.org/10.1039/b819318p

    Article  CAS  PubMed  Google Scholar 

  31. Ferrentino, R., Ceccato, R., Marchetti, V., Andreottola, G., and Fiori, L., Appl. Sci., 2020, vol. 10, no. 10, p. 3445. https://doi.org/10.3390/app10103445

    Article  CAS  Google Scholar 

  32. Kambo, H.-S., and Dutta, A., Energy Conv. Manag., 2015, vol. 105, p. 746. https://doi.org/10.1016/j.enconman.2015.08.031

    Article  CAS  Google Scholar 

  33. Tomic, M., Ljubojevic, M., Micic, R., Simikic, M., Dulic, J., Narandzic, T., Cukanovic, J., Sentic, I., and Dedovic, N., Fuel, 2020, vol. 277, p. 118162. https://doi.org/10.1016/j.fuel.2020.118162

    Article  CAS  Google Scholar 

  34. Micic, D.-R., Tomic, D.-M., Simikic, D.-M., and Zarubica, A.-R., Hem. Ind., vol. 67, no. 4, p. 629. https://doi.org/10.2298/HEMIND120716106M

  35. ISO 712: Standard Test Gravimetry Method for Moisture Content in Biomass.

  36. ISO EN 15403:2012: Standard Test Method for Ash in Biomass.

  37. Rahman, M.-S., Food Properties Handbook, Boca Raton: Taylor & Francis Group, 2009, 2nd ed., p. 397.

    Book  Google Scholar 

  38. Official Methods of Analysis of AOAC International, Method 972.43: Micro-Chemical Determination of Carbon, Hydrogen, and Nitrogen, Automated Method, AOAC International, Arlington, VA, 2000, 17th ed.

  39. EN ISO 18125:2017: Standard Test Method for Solid Biofuels—Determination of Calorific Value. https://www.iso.org/standard/61517.html. Accessed August 20, 2021.

  40. Radojcin, M., Babic, M., Babic, Lj., Pavkov, I., and Stojanovic, C., J. Proc. Ener. Agric., 2010, vol. 14, p. 81.

    Google Scholar 

  41. Zhang, X., Gao, B., Zhao, S., Wu, Pengfei., Han, L., and Liu, X., J. Cleaner Prod., 2020, vol. 242, p. 118426. https://doi.org/10.1016/j.jclepro.2019.118426

    Article  CAS  Google Scholar 

  42. Minaret, J. and Dutta, A., Biores. Tech., 2016, vol. 200, p. 804. https://doi.org/10.1016/j.biortech.2015.11.010

    Article  CAS  Google Scholar 

  43. Tippayawong, N., Kantakanit, P., and Koonaphapdeelert, S., The 6th Int. Conf. on Power and Energy Systems Engineering (CPESE 2019), Okinawa, 2020, vol. 6, p. 114. https://doi.org/10.1016/j.egyr.2019.11.050

  44. Reza, T.-M., Wirth, B., Luder, U., and Werner, M., Biores. Tech., 2014, vol. 169, p. 352. https://doi.org/10.1016/j.biortech.2014.07.010

    Article  CAS  Google Scholar 

  45. Shojaeiarani, J., Bajwa, S.-D., and Bajwa, G.-S., Bio. Res., 2019, vol. 14, no. 2, p. 4996.

    Google Scholar 

  46. Shumovskii, A.V., Gorolov, E.G., and Noshin, M.A., Solid Fuel Chem., 2020, vol. 54, p. 25. https://doi.org/10.3103/S0361521920010085

    Article  CAS  Google Scholar 

  47. Kaliyan, N., Morey, V.-R., White, M.-D., and Doering, A., Trans. ASABE, 2009, vol. 52, no. 2, p. 543. https://doi.org/10.13031/2013.26812

    Article  Google Scholar 

  48. Novakovic, D. and Devic, M., Yugoslav Society of Thermal Engineers, Institute of Nuclear Sciences, Vinca, 1997, p. 58.

    Google Scholar 

  49. Reza, T.-M., Rottler, M., Rottler, E., Herklotz, L., and Wirth, B., Biores. Tech., 2015, vol. 182, p. 336. https://doi.org/10.1016/j.biortech.2015.02.024

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This paper is a result of research within the project “Research and development of ionic biofluids – RIDIBF” which is implemented within the Program for excellent projects of young researchers – PROMIS funded by the Science Fund of the Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Stamenković.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavkov, I., Radojčin, M., Stamenković, Z. et al. Hydrothermal Carbonization of Agricultural Biomass: Characterization of Hydrochar for Energy Production. Solid Fuel Chem. 56, 225–235 (2022). https://doi.org/10.3103/S0361521922030077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0361521922030077

Keywords:

Navigation