Skip to main content
Log in

Distributed Resonators from Comparable Sections of Transmission Line

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

The paper proposes new methods of parametric and structural-parametric synthesis of resonators that contain multiple transmission line segments of the same length. These methods allow to optimize resonators of different configurations and with different characteristic impedances of line segments Z0i. Optimal resonators are those that have the minimum ratio m = Z0max/Z0min for a given ratio between critical frequencies (poles and zeros of input impedance). Parametric synthesis refers to stepped impedance resonators (SIR), whose composite segments are oriented along one straight line. Structural-parametric synthesis is applied to resonators of a more general kind, which contain open and short-circuited stubs. Parametric synthesis made it possible to optimize some SIRs that have a useful relationship between critical frequencies. Resonators of more complex configuration are synthesized using structural-parametric synthesis. Their parameters significantly exceed SIR. This is due to the fact that in structural-parametric synthesis the possibilities of choosing the best solution are much wider. The authors proposed a microstrip bandpass filter (BPF) with synthesized resonators, which provide the ratio of the first two resonant frequencies 6.84 and wide stopband at m = 2.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. D. Psychogiou, R. Gomez-Garcia, D. Peroulis, "RF wide-band bandpass filter with dynamic in-band multi-interference suppression capability," IEEE Trans. Circuits Syst. II Express Briefs, v.65, n.7, p.898 (2018). DOI: https://doi.org/10.1109/TCSII.2017.2726145.

    Article  Google Scholar 

  2. W. Feng, X. Gao, W. Che, W. Yang, Q. Xue, "High selectivity wideband balanced filters with multiple transmission zeros," IEEE Trans. Circuits Syst. II Express Briefs, v.64, n.10, p.1182 (2017). DOI: https://doi.org/10.1109/TCSII.2015.2482398.

    Article  Google Scholar 

  3. R. Gomez-Garcia, R. Loeches-Sanchez, D. Psychogiou, D. Peroulis, "Multi-stub-loaded differential-mode planar multiband bandpass filters," IEEE Trans. Circuits Syst. II Express Briefs, v.65, n.3, p.271 (2018). DOI: https://doi.org/10.1109/TCSII.2017.2688336.

    Article  Google Scholar 

  4. L. Balewski, G. Fotyga, M. Mrozowski, M. Mul, P. Sypek, D. Szypulski, A. Lamecki, "Step on it bringing fullwave finite-element microwave filter design up to speed," IEEE Microw. Mag., v.21, n.3, p.34 (2020). DOI: https://doi.org/10.1109/MMM.2019.2958165.

    Article  Google Scholar 

  5. S. Tamiazzo, G. Macchiarella, "Synthesis of cross-coupled filters with frequency-dependent couplings," IEEE Trans. Microw. Theory Tech., v.65, n.3, p.775 (2017). DOI: https://doi.org/10.1109/TMTT.2016.2633258.

    Article  Google Scholar 

  6. P. Zhao, K. Wu, "Cascading fundamental building blocks with frequency-dependent couplings in microwave filters," IEEE Trans. Microw. Theory Tech., v.67, n.4, p.1432 (2019). DOI: https://doi.org/10.1109/TMTT.2019.2895532.

    Article  Google Scholar 

  7. A. Zakharov, S. Rozenko, L. Pinchuk, S. Litvintsev, "Microstrip quazi-elliptic bandpass filter with two pairs of anti-parallel mixed-coupled SIRs," IEEE Microw. Wirel. Components Lett., p.1 (2021). DOI: https://doi.org/10.1109/LMWC.2021.3065394.

    Article  Google Scholar 

  8. S. Marin, J. D. Martinez, C. I. Valero, V. E. Boria, "Microstrip filters with enhanced stopband based on lumped bisected pi-sections with parasitics," IEEE Microw. Wirel. Components Lett., v.27, n.1, p.19 (2017). DOI: https://doi.org/10.1109/LMWC.2016.2630841.

    Article  Google Scholar 

  9. S. Chen, L.-F. Shi, G.-X. Liu, J.-H. Xun, "An alternate circuit for narrow-bandpass elliptic microstrip filter design," IEEE Microw. Wirel. Components Lett., v.27, n.7, p.624 (2017). DOI: https://doi.org/10.1109/LMWC.2017.2711528.

    Article  Google Scholar 

  10. A. V. Zakharov, M. E. Il’chenko, "A new approach to designing varicap-tuned filters," J. Commun. Technol. Electron., v.55, n.12, p.1424 (2010). DOI: https://doi.org/10.1134/S1064226910120156.

    Article  Google Scholar 

  11. W.-J. Zhou, J.-X. Chen, "High-selectivity tunable balanced bandpass filter with constant absolute bandwidth," IEEE Trans. Circuits Syst. II Express Briefs, v.64, n.8, p.917 (2017). DOI: https://doi.org/10.1109/TCSII.2016.2621120.

    Article  Google Scholar 

  12. L. Gao, T.-W. Lin, G. M. Rebeiz, "Design of tunable multi-pole multi-zero bandpass filters and diplexer with high selectivity and isolation," IEEE Trans. Circuits Syst. I Regul. Pap., v.66, n.10, p.3831 (2019). DOI: https://doi.org/10.1109/TCSI.2019.2914170.

    Article  Google Scholar 

  13. D. Lu, X. Tang, N. S. Barker, M. Li, T. Yan, "Synthesis-applied highly selective tunable dual-mode BPF with element-variable coupling matrix," IEEE Trans. Microw. Theory Tech., v.66, n.4, p.1804 (2018). DOI: https://doi.org/10.1109/TMTT.2017.2783376.

    Article  Google Scholar 

  14. A. Zakharov, S. Rozenko, S. Litvintsev, M. Ilchenko, "Hairpin resonators in varactor-tuned microstrip bandpass filters," IEEE Trans. Circuits Syst. II Express Briefs, v.67, n.10, p.1874 (2020). DOI: https://doi.org/10.1109/TCSII.2019.2953247.

    Article  Google Scholar 

  15. A. Zakharov, S. Litvintsev, M. Ilchenko, "Transmission line tunable resonators with intersecting resonance regions," IEEE Trans. Circuits Syst. II Express Briefs, v.67, n.4, p.660 (2020). DOI: https://doi.org/10.1109/TCSII.2019.2922429.

    Article  Google Scholar 

  16. M.-S. Chung, I.-S. Kim, S.-W. Yun, "Varactor-tuned hairpin bandpass filter with an attenuation pole," in 2005 Asia-Pacific Microwave Conference Proceedings (IEEE, Washington, 2005). DOI: https://doi.org/10.1109/APMC.2005.1606748.

    Chapter  Google Scholar 

  17. G. Megla, Dezimeterwellentechnik: theorie und technik der dezimeterschaltungen (Fachbuchverlag, Leipzig, 1955).

    Google Scholar 

  18. M. Makimoto, S. Yamashita, "Compact bandpass filters using stepped impedance resonators," Proc. IEEE, v.67, n.1, p.16 (1979). DOI: https://doi.org/10.1109/PROC.1979.11196.

    Article  Google Scholar 

  19. M. Makimoto, S. Yamashita, "Bandpass filters using parallel coupled stripline stepped impedance resonators," IEEE Trans. Microw. Theory Tech., v.28, n.12, p.1413 (1980). DOI: https://doi.org/10.1109/TMTT.1980.1130258.

    Article  Google Scholar 

  20. L. Zhu, S. Sun, W. Menzel, "Ultra-wideband (UWB) bandpass filters using multiple-mode resonator," IEEE Microw. Wirel. Components Lett., v.15, n.11, p.796 (2005). DOI: https://doi.org/10.1109/LMWC.2005.859011.

    Article  Google Scholar 

  21. J. X. Chen, Y. Ma, J. Cai, L. H. Zhou, Z. H. Bao, W. Che, "Novel frequency-agile bandpass filter with wide tuning range and spurious suppression," IEEE Trans. Ind. Electron., v.62, n.10, p.6428 (2015). DOI: https://doi.org/10.1109/TIE.2015.2427122.

    Article  Google Scholar 

  22. W. Qin, J. Cai, Y.-L. Li, J.-X. Chen, "Wideband tunable bandpass filter using optimized varactor-loaded SIRs," IEEE Microw. Wirel. Components Lett., v.27, n.9, p.812 (2017). DOI: https://doi.org/10.1109/LMWC.2017.2734848.

    Article  Google Scholar 

  23. A. V. Zakharov, M. Y. Ilchenko, L. S. Pinchuk, "Coupling coefficients of step-impedance resonators in stripeline band-pass filters of array type," Radioelectron. Commun. Syst., v.57, n.5, p.217 (2014). DOI: https://doi.org/10.3103/S0735272714050045.

    Article  Google Scholar 

  24. A. V. Zakharov, M. Y. Ilchenko, V. Y. Karnauh, L. S. Pinchuk, "Stripline bandpass filters with step-impedance resonators," Radioelectron. Commun. Syst., v.54, n.3, p.163 (2011). DOI: https://doi.org/10.3103/S0735272711030071.

    Article  Google Scholar 

  25. A. Zakharov, S. Litvintsev, M. Ilchenko, "Trisection bandpass filters with all mixed couplings," IEEE Microw. Wirel. Components Lett., v.29, n.9, p.592 (2019). DOI: https://doi.org/10.1109/LMWC.2019.2929650.

    Article  Google Scholar 

  26. P. I. Richards, "Resistor-transmission-line circuits," Proc. IRE, v.36, n.2, p.217 (1948). DOI: https://doi.org/10.1109/JRPROC.1948.233274.

    Article  Google Scholar 

  27. H. J. Riblet, "General synthesis of quarter-wave impedance transformers," IRE Trans. Microw. Theory Tech., v.5, n.1, p.36 (1957). DOI: https://doi.org/10.1109/TMTT.1957.1125088.

    Article  Google Scholar 

  28. Microwave Filters and Circuits (Academic Press, 1970). URI: https://www.elsevier.com/books/microwave-filters-and-circuits/matsumoto/978-0-12-027961-6.

    Google Scholar 

  29. Modern filter theory and design (Wiley, New York, 1973).

    Google Scholar 

  30. G. A. Korn, T. M. Korn, Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review (McGraw-Hill, New York, NY, 1961).

    MATH  Google Scholar 

  31. J.-S. Hong, Microstrip Filters for RF/Microwave Applications (Wiley, New Jersey, 2011). DOI: https://doi.org/10.1002/9780470937297.

    Book  Google Scholar 

  32. W. Cauer, W. Klein, F. M. Pelz, K. Cauer, G. E. Knausenberger, Synthesis of Linear Communications Networks (McGraw-Hill, New York, NY, 1958).

    Google Scholar 

  33. H. Ozaki, J. Ishii, "Synthesis of a class of strip-line filters," IRE Trans. Circuit Theory, v.5, n.2, p.104 (1958). DOI: https://doi.org/10.1109/TCT.1958.1086441.

    Article  Google Scholar 

  34. J. T. Kuo, E. Shih, "Microstrip stepped impedance resonator bandpass filter with an extended optimal rejection bandwidth," IEEE Trans. Microw. Theory Tech., v.51, n.5, p.1554 (2003). DOI: https://doi.org/10.1109/TMTT.2003.810138.

    Article  Google Scholar 

  35. A. V. Zakharov, M. E. Il’chenko, "Thin bandpass filters containing sections of symmetric strip transmission line," J. Commun. Technol. Electron., v.58, n.7, p.728 (2013). DOI: https://doi.org/10.1134/S1064226913060144.

    Article  Google Scholar 

  36. A. V. Zakharov, M. E. Il’chenko, "Pseudocombline bandpass filters based on half-wave resonators manufactured from sections of balanced striplines," J. Commun. Technol. Electron., v.60, n.7, p.801 (2015). DOI: https://doi.org/10.1134/S1064226915060182.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zakharov.

Ethics declarations

ADDITIONAL INFORMATION

A. V. Zakharov, S. N. Litvintsev, and S. A. Rozenko

The authors declare that they have no conflict of interest.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347021030018 with DOI: https://doi.org/10.20535/S0021347021030018

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika, No. 3, pp. 127-145, March, 2021 https://doi.org/10.20535/S0021347021030018 .

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, A.V., Litvintsev, S.N. & Rozenko, S.A. Distributed Resonators from Comparable Sections of Transmission Line. Radioelectron.Commun.Syst. 64, 107–124 (2021). https://doi.org/10.3103/S0735272721030018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272721030018

Navigation