Skip to main content
Log in

Recording and Modeling of Ulf–Elf Signals at the Staraya Pustyn Station During the Fenics-2019 Experiment

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

In September 2019, on the Kola Peninsula, an experiment was carried out to generate ULF–ELF signals at night using two decommissioned industrial power lines as a horizontal emitting antenna. The line current was supplied from an external 200 kW generator. The current strength varied from 240 A at low frequencies (0.382 Hz) to 20 A at the highest (194 Hz). The paper presents the results of recording ULF signals at the Staraya Pustyn magnetic station, which is 1610 km from the power line. Signals with frequencies from 0.6 to 6.4 Hz were recorded. The signal amplitudes, normalized to the emitter current, varied in the range of 0.4–0.7 fT/A. For theoretical estimates, two models were used: (1) formulas from the theory of ELF field excitation in the Earth–ionosphere waveguide and (2) a numerical model of the ULF field in the atmosphere and ionosphere created by a linear surface current of infinite length. The numerical model is based on calculation of the system of Maxwell equations in a vertically inhomogeneous atmosphere and ionosphere, the parameters of which are calculated using the IRI model. A fundamental feature of model 2 is that it takes into account the contribution of the ionospheric waveguide propagation to the excited field at large distances at frequencies above the critical waveguide frequency of ~0.5 Hz. The dependence of the amplitude of the recorded signals from an artificial source on a frequency of 2–8 Hz has a nonmonotonic character, which may be a manifestation of the effects of waveguide propagation along the ionosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Bannister, P.R., Extremely Low Frequency (ELF) Propagation, Naval Underwater Systems Center, 1979.

    Google Scholar 

  2. Belyaev, P.P., Polyakov, S.V., Ermakova, E.N. Isaev, S.V., Yakunin, M.N., Sobchakov, L.A. Vasilyev, A.V., Astakhova, N.L., Vladimirov, D.N., Volosevich, V.S., Protopopov, L.N., Gordyushkin, S.M., Savitsky, A.P., Red’ko, G.V., Eliseev, A.A., et al., First experiments on generating and receiving artificial ULF (0.3–12 Hz) emissions at a distance of 1500 km, Radiophys. Quantum Electron., 2002, vol. 45, no. 2, pp. 135–146.

    Article  Google Scholar 

  3. Bernstein, S.L., Burrows, M.L., Evans, J.E., Griffiths, A.S., McNeill, D.A., Niessen, C.W., Richer, I., White, D.P., and Willim, D.K., Long-range communications at extremely low frequencies, Proc. IEEE, 1974, vol. 62, no. 3, pp. 292–312.

    Article  Google Scholar 

  4. Boteler, D.H. and Pirjola, R.J., The complex image method for calculating the magnetic and electric fields produced at the surface of the Earth by the auroral electrojet, Geophys. J. Int., 1998, vol. 132, pp. 31–40.

    Article  Google Scholar 

  5. Ermakova, E.N., Kotik, D.S., Sobchakov, L.A., Polyakov, S.V., Vasiliev, A.V., Bösinger, T., and Belova, N.I., Experimental studies of propagation of artificial electromagnetic signals in the range of 0.6–4.2 Hz, Radiophys. Quantum Electron., 2005, vol. 48, no. 9, pp. 700–710.

    Article  Google Scholar 

  6. Ermakova, E.N., Kotik, D.S., Polyakov, S.V., Bösinger, T., and Sobchakov, L.A., A power line as a tunable ULF-wave radiator: Properties of artificial signal at distances of 200 to 1000 km, J. Geophys. Res., 2006, vol. 111. https://doi.org/10.1029/2005JA011420

  7. Ermakova, E.N., Ryabov, A.V., Pilipenko, V.A., Fedorov, E.N., and Kudin, D.V., A new station for monitoring cosmic and atmospheric electromagnetic radiation, Vestn. Otd. Nauk Zemle Ross. Akad. Nauk, 2019, vol. 11. https://doi.org/10.2205/2019NZ000362

  8. Fedorov, E.N., Mazur, N.G., Pilipenko, V.A., and Vakhnina, V.V., Modeling ELF electromagnetic field in the upper ionosphere from power transmission lines, Radio Sci., 2020, vol. 55. https://doi.org/10.1029/2019RS006943

  9. Guglielmi, A.V., Hydromagnetic diagnostics and geoelectric sounding, Physics-Uspekhi, 1989, vol. 158, pp. 605–637.

    Google Scholar 

  10. Kirillov, V.V., Two-dimensional theory of propagation of ELF electromagnetic waves in the Earth–ionosphere waveguide, Izv. Vuzov, Radiofiz., 1996, vol. 39, no. 12, pp. 1103–1112.

    Google Scholar 

  11. Kirillov, V.V. and Kopeikin, V.N., Formation of a resonance structure of the local inductance of the ionosphere at frequencies 0.1–10 Hz, Radiophys. Quantum Electron., 2003, vol. 46, no. 1, pp. 1–12.

    Article  Google Scholar 

  12. Makarov, G.I., Novikov, V.B., and Rybachek, S.T., Rasprostranenie radiovoln v volnovodnom kanale Zemlya–ionosfera i v ionosfere (Propagation of Radio Waves in the Earth-Ionosphere Waveguide Channel and in the Ionosphere), Moscow: Nauka, 1993.

  13. Mazur, N.G., Fedorov, E.N., Pilipenko, V.A., and Vakhnina, V.V., ULF electromagnetic field in the upper ionosphere excited by lightning, J. Geophys. Res., 2018, vol. 123, pp. 6692–6702. https://doi.org/10.1029/2018JA025622

    Article  Google Scholar 

  14. Pilipenko, V. and Fedorov, E., Coupling mechanism between geoacoustic emission and electromagnetic anomalies prior to earthquakes, Res. Geophys., 2014, vol. 4, pp. 40–44. https://doi.org/10.4081/rg.2014.5008

    Article  Google Scholar 

  15. Pilipenko, V.A., Chugunava, O.M., Engebretson, M.J., and Lessard, M., Trans-polar propagation of Pi1 wave burst as observed by an Antarctic array during the Themis 2007/03/23 substorm, “Physics of Auroral Phenomena.” Proc. 34 Annual Seminar, Apatity, 2011, pp. 86–89.

  16. Pilipenko, V.A., Parrot, M., Fedorov, E.N., and Mazur, N.G., Electromagnetic field in the upper ionosphere from ELF ground-based transmitter, J. Geophys. Res., 2019, vol. 124, no. 10, pp. 8066–8080. https://doi.org/10.1029/2019JA026929

    Article  Google Scholar 

  17. Potapov, A.S., Polyushkina, T.N., Tsegmed, B., Oinats, A.V., Pashinin, A.Yu., Edemskiy, I.K., Mylnikova, A.A., and Ratovsky, K.G., Considering the potential of IAR emissions for ionospheric sounding, J. Atmos. Solar-Terr. Phys., 2017, vol. 164, pp. 229–234. https://doi.org/10.1016/j.jastp.2017.08.026

    Article  Google Scholar 

  18. Sobchakov, L.A., Astakhova, N.L., and Polyakov, S.V., Excitation of electromagnetic waves in a plane waveguide with anisotropic upper wall, Radiophys. Quantum Electron., 2003, vol. 46, no. 1, pp. 918–927.

    Article  Google Scholar 

  19. Tereshchenko, E.D., Grigoriev, V.F., Sidorenko, A.E., Milichenko, A.N., Molkov, A.V., Sobchakov, L.A., and Vasiliev, A.V., Influence of the ionosphere on electromagnetic waves from ground-based emitter in the frequency band 1–10 Hz, Geomagn. Aeron., 2007, vol. 47, no. 6, pp. 810–811.

    Article  Google Scholar 

  20. Tereshchenko, P.E., Estimating the effective conductivity of the underlying surface based on the results of receiving the electromagnetic fields in the middle zone of an active source in the Earth–ionosphere waveguide, Seism. Instrum., 2020, vol. 56, pp. 578–583. https://doi.org/10.3103/S0747923920050126

    Article  Google Scholar 

  21. Tereshchenko, E.D., Ivanov, N.V., Sidorenko, A.E., and Grigoriev, V.F., Investigation of the pecularities of artificial electromagnetic signal propagation at high latitudes in the range 0.1–10 Hz, Geomagn. Aeron., 2010, vol. 50, no. 5, pp. 632–642.

    Article  Google Scholar 

  22. Tereshchenko, E.D., Tereshchenko, P.E., Sidorenko, A.E., Grigoriev, V.F., and Zhamaletdinov, A.A., Effect of ionosphere on the excitation of electromagnetic field at extremely low and lower frequencies in the near-field zone, Tech. Phys., 2018, vol. 63, no. 6, pp. 881–887. https://doi.org/10.1134/S1063784218060233

    Article  Google Scholar 

  23. Velikhov, E.P., Zhamaletdinov, A.A., Sobchakov, L.A., Veshev, A.V., Saraev, A.K., Tokarev, A.D., Shevtsov, A.N., Vasil’ev, A.V., Sonnikov, A.G., and Yakovlev, A.V., Experience of frequency electromagnetic sounding of the earth’s crust using a powerful ELF antenna, Dokl. Ross. Akad. Nauk, 1994, vol. 338, no. 1, pp. 106–109.

    Google Scholar 

  24. Weisleib, Yu.V. and Sobchakov, L.A., Dipole near a flat interface between two media, in Antenny: Sb. nauch. statei (Antenna: Sci. Proc.), Pistolkors, A.A., Ed., Moscow: Svyaz, 1979, no. 27, pp. 98–109.

  25. Zhamaletdinov, A.A., Shevtsov, A.N., Velikhov, E.P., Skorokhodov, A.A., Kolesnikov, V.E., Korotkova, T.G., Ryazantsev, P.A., Efimov, B.V., Kolobov, V.V., Barannik, M.B., Prokopchuk, P.I., Selivanov, V.N., Kopytenko, Yu.A., Kopytenko, E.A., Ismagilov, V.S., et al., Study of interaction of ELF–ULF range (0.1–200 Hz) electromagnetic waves with the Earth’s crust and the ionosphere in the field of industrial power transmission lines (FENICS Experiment), Izv., Atmos. Oceanic Phys., 2015, vol. 51, no. 8, pp. 826–857. https://doi.org/10.1134/S0001433815080083

    Article  Google Scholar 

  26. Zhamaletdinov, A.A., Velikhov, E.P., Shevtsov, A.N., Skorokhodov, A.A., Kolobov, V.V., Ivonin, V.V., and Kolesnikov, V.V., The Murman-2018 experiment on remote sensing in order to study the “impenetrability” boundary at the transition between brittle and plastic states of the crystalline Earth’s crust, Dokl. Earth Sci., 2019, vol. 486, pp. 575–579. https://doi.org/10.1134/S1028334X19050301

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express gratitude to the reviewers for constructive comments, as well as to V.V. Kolobov, V.V. Ivonin, and M.B. Barannik, who provided operation of the generator installation for the industrial power line.

Funding

The study was carried out under the state tasks assigned by the Ministry of Education and Science of the Russian Federation: IPE RAS and GI KSC RAS (topic no. 0226-2019-0052), CES KSC RAS (topic no. 0226-2019-0067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Pilipenko.

Ethics declarations

The authors declare no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryabov, A.V., Pilipenko, V.A., Ermakova, E.N. et al. Recording and Modeling of Ulf–Elf Signals at the Staraya Pustyn Station During the Fenics-2019 Experiment. Seism. Instr. 57, 329–342 (2021). https://doi.org/10.3103/S0747923921030129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923921030129

Keywords:

Navigation