Skip to main content
Log in

Small-Scale Magnetic Features in the Active Region NOAA 11024

  • SOLAR PHYSICS
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

To reveal and study magnetic features in the active region NOAA 11024, temporal changes in the profiles of the Stokes parameter V of photospheric lines Fe I λ 630.15 nm, Fe I λ 630.25 nm, Fe I λ 630.35 nm, and Ti I λ 630.38 nm were analyzed. Data of spectropolarimetric observations carried out with a high temporal and spatial resolution at the French-Italian solar telescope THEMIS (Tenerife Island, Spain) on July 4, 2009, were used. The examined area of the active region includes two pores of opposite polarity and two plages. One of the pores was rapidly developing. For 20 minutes of observations, eruptive processes, such as three Ellerman bombs and chromospheric surges, took place in this area. The V profiles of the photospheric lines substantially differ in different places of the active region. They are normal in most cases. In the pores, their amplitude increases toward outer edges of the pores. The maximum amplitude was noticed in the profiles at the boundary between the emerging pore and the Ellerman bomb. It was rapidly increasing with time. Two small patches with abnormal V profiles of the photospheric lines Fe I λ 630.15 and 630.25 nm have been found. The amplitude of the profiles in these patches was reduced. The amplitude and the shape of the profiles changed with time. One of the patches was between the pores, while the other was in the plage area. During the observations, the polarity of the photospheric magnetic field in these patches changed. Evidence of new, emerging, small-scale magnetic fluxes of opposite polarity was obtained. Due to the emergence of these fluxes, magnetic reconnections started and chromospheric surges and an Ellerman bomb appeared. It has been found that there are strong oscillations in the amplitude of the V profiles of photospheric lines Fe I λ 630.15 and 630.25 nm during Ellerman bombs, which may indicate the pulsed energy realize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. V. Archontis and A. W. Hood, “Formation of Ellerman bombs due to 3D flux emergence,” Astron. Astrophys. 508, 1469–1483 (2009).

    Article  ADS  Google Scholar 

  2. J. M. Beckers, “A table of Zeeman multiplets,” Phys. Sci. Res. Pap. (U. S., Air Force Cambridge Res. Lab.), No. 371 (1969).

  3. N. Bello González, S. Danilovic, and F. Kneer, “On the structure and dynamics of Ellerman bombs. Detailed study of three events and modelling of Hα,” Astron. Astrophys. 557, A102 (2013).

    Article  Google Scholar 

  4. P. N. Bernasconi, C. U. Keller, S. K. Solanki, and J. O. Stenflo, “Complex magnetic fields in an active region,” Astron. Astrophys. 329, 704–720 (1998).

    ADS  Google Scholar 

  5. H. C. Dara, C. E. Alissandrakis, T. G. Zachariadis, and A. A. Georgakilas, “Magnetic and velocity field in association with Ellerman bombs,” Astron. Astrophys. 322, 653–658 (1997).

    ADS  Google Scholar 

  6. L. Delbouille, G. Roland, and L. Neven, Photometric Atlas of the Solar Spectrum from λ 3000 to λ 10000 (Inst. d’Astrophysique, Liege, 1973).

    Google Scholar 

  7. A. J. Engell, M. Siarkowski, M. Gryciuk, et al., “Flares and their underlying magnetic complexity,” Astrophys. J. 726, 12 (2011).

    Article  ADS  Google Scholar 

  8. C. E. Fischer, C. U. Keller, F. Snik, et al., “Unusual Stokes V profiles during flaring activity of a delta sunspot,” Astron. Astrophys. 547, A34 (2012).

    Article  Google Scholar 

  9. M. Franz, M. Collados, C. Bethge, et al., “Magnetic fields of opposite polarity in sunspot penumbrae,” Astron. Astrophys. 596, A4 (2016).

    Article  Google Scholar 

  10. M. Franz and R. Schlichenmaier, “The velocity field of sunspot penumbrae. II. Return flow and magnetic fields of opposite polarity,” Astron. Astrophys. 550, A97 (2013).

    Article  ADS  Google Scholar 

  11. M. K. Georgoulis, D. M. Rust, P. N. Bemasconi, and B. Schmieder, “Statistics, morphology, and energetics of Ellerman bombs,” Astrophys J. 575, 506–528 (2002).

    Article  ADS  Google Scholar 

  12. A. A. Golovko, “The crossover effect in sunspots and the fine structure of penumbra,” Sol. Phys. 37, 113–125 (1974).

    Article  ADS  Google Scholar 

  13. V. M. Grigorjev and J. M. Katz, “The crossover and magneto-optical effects in sunspot spectra,” Sol. Phys. 22, 119–128 (1972).

    Article  ADS  Google Scholar 

  14. N. C. Joshi, B. Schmieder, T. Magara, et al., “Chain reconnections observed in sympathetic eruptions,” Astrophys. J. 820, 126 (2016).

    Article  ADS  Google Scholar 

  15. Y. Katsukawa and J. Jurčák, “A new type of small-scale downflow patches in sunspot penumbrae,” Astron. Astrophys. 524, A20 (2010).

    Article  Google Scholar 

  16. E. V. Khomenko, M. Collados, S. K. Solanki, et al., “Quiet-Sun inter-network magnetic fields observed in the infrared,” Astron. Astrophys. 408, 1115–1135 (2003).

    Article  ADS  Google Scholar 

  17. O. Kjeldseth-Moe, “On the magnetic-field configuration in sunspots / Structure and development of solar active region,” in Structure and Development of Solar Active Region, (Proc. 35th IAU Symp., Budapest, Hungary, Sept. 4–8, 1967), Ed. by K. O. Kiepenheuer (Reidel, Dordrecht, 1968), p. 202.

  18. N. N. Kondrashova, “Abnormal Stokes profiles of the photospheric lines in the region of chromospheric dual flows in the surroundings of a solar pore. I. Observations,” Kinematics Phys. Celestial Bodies 34, 53–67 (2018).

    Article  ADS  Google Scholar 

  19. N. N. Kondrashova, M. N. Pasechnik, S. N. Chornogor, and E. V. Khomenko, “Atmosphere dynamics of the active region NOAA 11024,” Sol. Phys. 284, 499–513 (2013).

    Article  ADS  Google Scholar 

  20. N. N. Kondrashova, M. N. Pasechnik, and U. M. Leiko, “Manifestation of a new magnetic flux emergence in the active region NOAA 11024,” in Proc. 4th UK-Ukraine-Spain Meeting on Solar Physics and Space Science, Kyiv, Ukraine, Aug. 28 – Sept. 1, 2017, p. 62.

  21. M. Kubo, B. Chye Low, and B. W. Lites, “Unresolved mixed polarity magnetic fields at flux cancellation site in solar photosphere at 0.3'' spatial resolution,” Astrophys. J. Lett. 793, L9 (2014).

    Article  ADS  Google Scholar 

  22. Z. Li, C. Fang, Y. Guo, et al., “Diagnostics of Ellerman bombs with high-resolution spectral data,” Res. Astron. Astrophys. 15, 1513 (2015).

    Article  ADS  Google Scholar 

  23. T. Matsumoto, R. Kitai, K. Shibata, et al., “Height dependence of gas flows in an Ellerman bomb,” Publ. Astron. Soc. Jpn. 60, 95–102 (2008).

    Article  ADS  Google Scholar 

  24. C. J. Nelson, E. M. Scullion, J. G. Doyle, et al., “Small-scale structuring of Ellerman bombs at the solar limb,” Astrophys. J. 798, 19 (2015).

    Article  ADS  Google Scholar 

  25. C. J. Nelson, S. Shelyag, M. Mathioudakis, et al., “Ellerman bombs—evidence for magnetic reconnection in the lower solar atmosphere,” Astrophys. J. 779, 125 (2013).

    Article  ADS  Google Scholar 

  26. J. Palacios, L. A. Balmaceda, S. Vargas Dominguez, et al., “Observations of vortex motion in the solar photosphere using Hinode-SP data Hinode-3,” in Proc. 3rd Hinode Science Meeting, Ed. by T. Sekii, T. Watanabe, and T. Sakurai (Astron. Soc. Pac., San Francisco, CA, 2012), in Ser.: ASP Conference Series, Vol. 454, pp. 51–54.

  27. E. Pariat, G. Aulanier, B. Schmieder, et al., “Resistive emergence of undulatory flux tubes,” Astrophys. J. 614, 1099–1112 (2004).

    Article  ADS  Google Scholar 

  28. M. N. Pasechnik, “Plasma motions in the solar loop of emerging magnetic flux,” Kinematics Phys. Celestial Bodies 30, 161–172 (2014).

    Article  ADS  Google Scholar 

  29. M. N. Pasechnik, “Spectral study of a pair of Ellerman bombs,” Kinematics Phys. Celestial Bodies 32, 55–69 (2016).

    Article  ADS  Google Scholar 

  30. M. N. Pasechnik, “Spectral study of Ellerman bombs. Photosphere,” Kinematics Phys. Celestial Bodies 34, 68–81 (2018).

    Article  ADS  Google Scholar 

  31. A. K. Pierce and J. B. Breckinridge, “The Kitt Peak table of photographic solar spectrum wavelengths,” Kitt Peak National Observatory Contribution No. 559 (Kitt Peak Natl. Obs., 1972).

    Google Scholar 

  32. I. Rueedi, S. K. Solanki, W. Livingston, and J. O. Stenfio, “Infrared lines as probes of solar magnetic features. III. Strong and weak magnetic fields in plages,” Astron. Astrophys. 263, 323–338 (1992).

    ADS  Google Scholar 

  33. R. J. Rutten, G. J. M. Vissers, L. H. M. Rouppe van der Voort, et al., “Ellerman bombs: fallacies, fads, usage,” J. Phys. Conf. Ser. 440, 012007 (2013).

    Article  Google Scholar 

  34. J. Sanchez Almeida and B. W. Lites, “Observation and interpretation of the asymmetric Stokes Q, U, and V line profiles in sunspots,” Astrophys. J. 398, 359–374 (1992).

    Article  ADS  Google Scholar 

  35. K. Sankarasubramanian and T. Rimmele, “Bisector analysis of Stokes profiles: effects due to gradients in the physical parameters,” Astrophys. J. 576, 1048–1063 (2002).

    Article  ADS  Google Scholar 

  36. G. B. Scharmer, J. de la Cruz Rodriguez, P. Sutterlin, and V. M. J. Henriques, “Opposite polarity field with convective downflow and its relation to magnetic spines in a sunspot penumbra,” Astron. Astrophys. 553, A63 (2013).

    Article  ADS  Google Scholar 

  37. P. H. Scherrer, R. S. Bogart, R. I. Bush, et al., “The solar oscillations investigation—Michelson Doppler Imager,” Sol. Phys. 162, 129–188 (1995).

    Article  ADS  Google Scholar 

  38. R. Schlichenmaier and M. Collados, “Spectropolarimetry in a sunspot penumbra. Spatial dependence of Stokes asymmetries in Fe I 1564.8 nm,” Astron. Astrophys. 381, 668–682 (2002).

    Article  ADS  Google Scholar 

  39. R. Schlichenmaier, R. Rezaei, and N. B. Gonzalez, “On the formation of penumbrae as observed with the German VTT SOHO/MDI, and SDO/HMI,” in Proc. 4th Hinode Science Meeting: Unsolved Problems and Recent Insights, Palermo, Italy, Oct. 11–15, 2010, Ed. by L. R. Bellot Rubio, F. Reale, and M. Carlsson, (Astron. Soc. Pac., San Francisco, CA, 2012), in Ser.: ASP Conference Series, Vol. 455, p. 61.

  40. T. Shimizu, B. W. Lites, Y. Katsukawa, et al., “Frequent occurrence of high-speed local mass downflows on the solar surface,” Astrophys. J. 680, 1467–1476 (2008).

    Article  ADS  Google Scholar 

  41. M. Sigwarth, “Properties and origin of asymmetric and unusual Stokes V profiles observed in solar magnetic fields,” Astrophys. J. 563, 1031–1044 (2001).

    Article  ADS  Google Scholar 

  42. A. Skumanich and B. Lites, “Velocity gradients across a flaring neutral line from Stokes II measureents,” in Proc. Solar Polarimetry: 11th Sacramento Peak Summer Workshop, Ed. by L. J. November (Natl. Sol. Obs., Sunspot, NM, 1991), pp. 307–317.

  43. B. Sylwester, J. Sylwester, M. Siarkowski, et al., “Physical characteristics of AR 11024 plasma based on SPHINX and XRT Data,” Cent. Eur. Astrophys. Bull. 35, 171–180 (2011).

    ADS  Google Scholar 

  44. G. Valori, L. M. Green, P. Démoulin, et al., “Nonlinear force-free extrapolation of emerging flux with a global twist and serpentine fine structures,” Sol. Phys. 278, 73–97 (2012).

    Article  ADS  Google Scholar 

  45. S. Vargas Domínguez, L. van Driel-Gesztelyi, and L. R. Bellot Rubio, “Granular-scale elementary flux emergence episodes in a solar active region,” Sol. Phys. 278, 99–120 (2012).

    Article  ADS  Google Scholar 

  46. S. Vargas Domínguez, J. Palacios, L. Balmaceda, et al., “Evolution of small-scale magnetic elements in the vicinity of granular-sized swirl convective motions,” Sol. Phys. 290, 301–319 (2015).

    Article  ADS  Google Scholar 

  47. G. J. M. Vissers, L. H. M. Rouppe van der Voort, and R. J. Rutten, “Ellerman bomb at high resolution. II. triggering, visibility and effect on upper atmosphere,” Astrophys. J. 774, 32 (2013).

    Article  ADS  Google Scholar 

  48. B. Viticchie and J. Sanchez Almeida, “Asymmetries of the Stokes V profiles observed by HINODE SOT/SP in the quiet Sun,” Astron. Astrophys. 530, A14 (2011).

    Article  ADS  Google Scholar 

  49. H. Watanabe, R. Kitai, K. Okamoto, et al., “Spectropolarimetric observation of an emerging flux region: triggering mechanisms of Ellerman bombs,” Astrophys. J. 684, 736–746 (2008).

    Article  ADS  Google Scholar 

  50. H. Watanabe, G. Vissers, R. Kitai, et al., “Ellerman bombs at high resolution. I. Morphological evidence for photospheric reconnection,” Astrophys. J. 736, 71 (2011).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to E.V. Khomenko and the THEMIS support group for their help with spectropolarimetric observations and to R.I. Kostyk for providing us with the data processing codes.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. N. Kondrashova or U. M. Leiko.

Additional information

Translated by E. Petrova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondrashova, N.N., Leiko, U.M. Small-Scale Magnetic Features in the Active Region NOAA 11024. Kinemat. Phys. Celest. Bodies 35, 70–84 (2019). https://doi.org/10.3103/S088459131902003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S088459131902003X

Keywords:

Navigation