Skip to main content
Log in

Refining the Cross Section of the Gallium Neutrino Capture Reaction and the Contributions from Sterile Neutrinos for Interpreting Neutrino Data on the Gallium Anomaly

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Graphical dependencies are presented of the probability of electron neutrino preservation in a model with three active and three sterile neutrinos as a function of the neutrino distance from the source at energies, which neutrinos acquire in processes with the participation of 51Cr, 37Ar, and 65Zn nuclei. Refined values of the cross section of the reaction for neutrino capture by 71Ga nuclei are also given for interpretation and prediction of the results of experiments to verify the Gallium anomaly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Abdurashitov, J.N. et al. (SAGE Collab.), Phys. Rev. C: Nucl. Phys., 2009, vol. 80, no. 1, 015807.

    Article  ADS  Google Scholar 

  2. Kaether, F., Hampel, W., Heusser, G., et al., Phys. Lett. B, 2010, vol. 685, no. 1, p. 47.

  3. Giunti, C., Laveder, M., Li, Y.F., and Long, H.W., Phys. Rev. D: Part., Fields, Gravitation, Cosmol., 2013, vol. 88, no. 7, 073008.

    Article  Google Scholar 

  4. Giunti, C. and Laveder, M., Phys. Rev. C: Nucl. Phys., 2011, vol. 83, no. 6, 065504.

    Article  ADS  Google Scholar 

  5. Barinov, V., Cleveland, B., Gavrin, V., et al., Phys. Rev. D, 2018, vol. 97, no. 7, 073001.

    Article  ADS  Google Scholar 

  6. Semenov, S.V., in Proc. Int. Conf. “The Multi-Messenger Astronomy: Gamma-Ray Bursts, Search for Electromagnetic Counterparts to Neutrino Events and Gravitational Waves,” N. Arkhys–Terskol, 2018, p. 193.

  7. Bilenky, S.M., Giunti, C., and Grimus, W., Eur. Phys. J. C, 1998, vol. 1, nos. 1–2, p. 247.

  8. Bilenky, S.M. and Pontekorvo, B.M., Sov. Phys. Usp., 1977, vol. 20, no. 10, p. 776.

  9. Tanabashi, M. et al. (Particle Data Group), Phys. Rev. D, 2018, vol. 98, no. 3, 030001.

  10. Esteban, I., Gonzalez-Garcia, M.C., Maltoni, M., et al., J. High Energy Phys., 2017, vol. 2017, no. 1, 87.

  11. Khruschov, V.V., Fomichev, S.V., and Titov, O.A., Phys. Atom. Nucl. 2016, vol. 79, no. 5, p. 708

  12. Petcov, S.T., Girardi, I., and Titov, A.V., Int. J. Mod. Phys. A, 2015, vol. 30. no. 13, 1530035.

  13. Abe, K. et al. (The T2K Collab.), Phys. Rev. D, 2017, vol. 96, no. 9, 092006.

    Article  ADS  Google Scholar 

  14. Wang, S., Wang, Y.-F., and Xia, D.-M., Chin. Phys. C, 2018, vol. 42, no. 6, 065103.

    Article  ADS  Google Scholar 

  15. Abazajian, K.N., Acero, M.A., Agarwalla, S.K., et al., arXiv: 1204.5379, 2012.

  16. Gorbunov, D.S., Phys.–Usp., 2014, vol. 57, no. 5, p. 503.

    Article  ADS  Google Scholar 

  17. Gavrin, V.N., Cleveland, B.T., Gorbachev, V.V., et al., Phys. Part. Nucl., 2017, vol. 48, no. 6, p. 967.

    Article  Google Scholar 

  18. Bellini, G., Bick, D., Bonfini, G., et al., J. High Energy Phys., 2013, vol. 2013, no. 8, 38.

    Article  Google Scholar 

  19. Demiański, M. and Doroshkevich, A.G., arXiv: 1511.07989v6, 2017.

  20. Marrodán Undagoitia, T. and Rauch, L., J. Phys. G: Nucl. Part. Phys., 2016, vol. 43, no. 1, 013001.

    Article  ADS  Google Scholar 

  21. Argüelles, C.R., Krut, A., Rueda, J.A., and Ruffini, R., Phys. Dark Universe, 2018, vol. 21, p. 82.

    Article  ADS  Google Scholar 

  22. Abe, T., Kitano, R., and Sato, R., Phys. Rev. D: Part., Fields, Gravitation, Cosmol., 2015, vol. 91, no. 9, 095004.

    Article  Google Scholar 

  23. Canetti, L., Drewes, M., and Shaposhnikov, M., Phys. Rev. Lett., 2013, vol. 110, no. 6, 061801.

    Article  ADS  Google Scholar 

  24. Conrad, J.M., Ignarra, C.M., Karagiorgi, G., et al., Adv. High Energy Phys., 2013, vol. 2013, 163897.

    Article  Google Scholar 

  25. Zysina, N.Yu., Fomichev, S.V., and Khruschov, V.V., Phys. Atom. Nucl., 2014, vol. 77, no. 7, p. 890.

    Article  ADS  Google Scholar 

  26. Khruschov, V.V. and Fomichev, S.V., Phys. Part. Nucl., 2017, vol. 48, no. 6, p. 990.

    Article  Google Scholar 

  27. Khruschov, V.V., Yudin, A.V., Nadyozhin, D.K., and Fomichev, S.V., Astron. Lett., 2015, vol. 41, no. 6, p. 260.

    Article  ADS  Google Scholar 

  28. Warren, M.L., Mathews, G.J., Meixner, M., et al., Int. J. Mod. Phys. A, 2016, vol. 31, no. 25, 1650137.

    Article  ADS  Google Scholar 

  29. Yudin, A.V., Nadyozhin, D.K., Khruschov, V.V., and Fomichev, S.V., Astron. Lett., 2016, vol. 42, no. 12, p. 800.

    Article  ADS  Google Scholar 

  30. Gariazzo, S., Giunti, C., Laveder, M., and Li, Y.F., J. High Energy Phys., 2017, vol. 2017, no. 6, 135.

    Article  Google Scholar 

  31. Bilenky, S.M., Phys. Part. Nucl. Lett., 2015, vol. 12, no. 4, p. 453.

    Article  Google Scholar 

  32. Khruschov, V.V. and Fomichev, S.V., Int. J. Mod. Phys. A, 2019, vol. 34, no. 29, 1950175.

    Article  ADS  Google Scholar 

  33. Blennow, M. and Smirnov, A.Yu., Adv. High Energy Phys., 2013, vol. 2013, 972485.

    Article  Google Scholar 

  34. Dentler, M., Hernández-Cabezudo, Á., Kopp, J., et al., J. High Energy Phys., 2018, vol. 2018, no. 8, 10.

    Article  Google Scholar 

  35. Diaz, A., Argüelles, C.A., Collin, G.H., et al., arXiv: 1906.00045, 2019.

  36. Böser, S., Buck, C., Giunti, C., et al., arXiv: 1906.01739, 2019.

  37. Alanssary, M., Frekers, D., Eronen, T., et al., Int. J. Mass Spectrom., 2016, vol. 406, p. 1.

    Article  Google Scholar 

  38. Frekers, D., Simon, M.C., Andreoiu, C., et al., Phys. Lett. B, 2013, vol. 722, nos. 4–5, p. 233.

  39. Giunti, C., Laveder, M., Li, Y.F., et al., Phys. Rev. D: Part., Fields, Gravitation, Cosmol., 2012, vol. 86, no. 11, 113014.

    Article  Google Scholar 

  40. Frekers, D., Adachi, T., Akimune, H., et al., Phys. Rev. C: Nucl. Phys., 2015, vol. 91, no. 3, 034608.

    Article  ADS  Google Scholar 

  41. Semenov, S.V., Šimkovic, F., Khruschev, V.V., and Domin, P., Phys. Atom. Nucl., 2000, vol. 63, no. 7, p. 1196.

    Article  ADS  Google Scholar 

  42. Bahcall, J.N., Nucl. Phys., 1966, vol. 75, no. 1, p. 10.

    Article  Google Scholar 

  43. Rose, M.E., Phys. Rev., 1936, vol. 49, no. 10, p. 727.

    Article  ADS  Google Scholar 

  44. Longmire, C. and Brown, H., Phys. Rev., 1949, vol. 75, no. 7, p. 1102.

    Article  ADS  Google Scholar 

  45. Gavrin, V.N., Gorbachev, V.V., Ibragimova, T.V., et al., Phys. Atom. Nucl., 2019, vol. 82, no. 1, p. 70.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Khruschov.

Additional information

Translated by M. Samokhina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khruschov, V.V., Fomichev, S.V. & Semenov, S.V. Refining the Cross Section of the Gallium Neutrino Capture Reaction and the Contributions from Sterile Neutrinos for Interpreting Neutrino Data on the Gallium Anomaly. Bull. Russ. Acad. Sci. Phys. 84, 906–910 (2020). https://doi.org/10.3103/S106287382008016X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106287382008016X

Navigation